
FEDERAL UNIVERSITY OF FRONTEIRA SUL
CAMPUS OF CHAPECÓ

COURSE OF COMPUTER SCIENCE

GABRIEL BATISTA GALLI

ON THE MARRIAGE OF STRINGS

CHAPECÓ
2018

GABRIEL BATISTA GALLI

ON THE MARRIAGE OF STRINGS

Final undergraduate work submitted as requirement
to obtain a Bachelor’s degree in Computer Science
from the Federal University of Fronteira Sul.
Advisor: Emílio Wuerges
Co-advisor: José Bins

CHAPECÓ
2018

Galli, Gabriel Batista

On the marriage of strings / Gabriel Batista Galli. – 2018.
49 pp.: il.

Advisor: Emílio Wuerges.
Co-advisor: José Bins.
Final undergraduate work – Federal University of Fronteira

Sul, course of Computer Science, Chapecó, SC, 2018.

1. ICCAD. 2. Bipartite matching. 3. String distance. 4. Suffix
array. 5. q-grams. I. Wuerges, Emílio, advisor. II. Bins, José,
co-advisor. III. Federal University of Fronteira Sul. IV. Title.

© 2018
All rights reserved to Gabriel Batista Galli. This work or any portion thereof may not be
reproduced without citing the source.
E-mail: ggabriel96@hotmail.com

ABSTRACT

Given two sets L and R of strings such that R is the result of applying unknown trans-
formations to L, match every string in L to its corresponding transformed string in R.
This problem was proposed at the 2018 International Conference on Computer-Aided
Design (ICCAD) CAD Contest, to which this work studies a deterministic solution using
graph theory and approximate string matching. From graph theory, bipartite matching
and stable marriage are reviewed; from approximate string matching, suffix array, edit
distance, q-gram distance and q-gram index are considered. Three other algorithms are
proposed based on these concepts, two of which only serve the purpose of being baselines
to the others. The proposed solution itself is divided in three steps: the construction of
filters (or indexes) on L and R with suffix array or q-gram index; the calculation of the
adjacency (preference) lists for the graph G = ({L ∪R}, E) with edit or q-gram distance
as edge weights; and, finally, the computation of the bipartite matching. A framework
for benchmarking the run time and accuracy of this approach was built. It also allows
an easy switching between the available algorithms. The most significant outcome of the
benchmarks is that the filtering step is the bottleneck of the proposed methodology. It
affects accuracy and prevents a proper reasoning about the impact of some of the com-
pared algorithms. Nevertheless, the works of the winning teams of the contest managed to
achieve 100% of accuracy. When they are published, it will be possible to study their so-
lutions and perhaps better understand the compromises of our choices in order to propose
improvements to our approach.

Keywords: ICCAD. Bipartite matching. String distance. Suffix array. q-grams.

LIST OF FIGURES

Figure 1 – Example of code mangling . 15
Figure 2 – Example of different mangling rules . 15
Figure 3 – Example of an instance of the problem 16
Figure 4 – Example of a correct matching . 23
Figure 5 – Illustrative diagram of our approach 29
Figure 6 – Run time of CM with simple index and suffix array 31
Figure 7 – Accuracy of CM with simple index and suffix array 32
Figure 8 – Run time of CM with all filters (random sample) 33
Figure 9 – Accuracy of CM with all filters (random sample) 34
Figure 10 – Run time of CM and LGM with suffix array 35
Figure 11 – Accuracy of CM and LGM with suffix array 36

LIST OF TABLES

Table 1 – Sizes of the test cases provided by Wu; Huang; Hsu (3) 17
Table 2 – Example of suffix array and results of a search 21
Table 3 – Example of q-gram index and results of a search 22
Table 4 – Test cases with accuracy difference beyond 5% 36
Table 5 – Sizes of preference lists using simple index 43
Table 6 – Sizes of preference lists using suffix array 44
Table 7 – Sizes of preference lists using simple index (random sample) 45
Table 8 – Sizes of preference lists using suffix array (random sample) 46
Table 9 – Sizes of preference lists using q-gram index (random sample) 47

LIST OF ALGORITHMS

Algorithm 1 – Edit distance algorithm . 19
Algorithm 2 – Stable marriage algorithm . 24
Algorithm 3 – Left Greedy Matcher algorithm . 25
Algorithm 4 – Framework algorithm . 27
Algorithm 5 – Benchmarking algorithm . 28
Algorithm 6 – Algorithm to build preference lists 28

CONTENTS

1 INTRODUCTION . 15
2 LITERATURE REVIEW . 19
2.1 STRING DISTANCE . 19
2.1.1 Edit distance . 19
2.1.2 q-gram distance . 20
2.2 FILTERS . 21
2.2.1 Suffix array . 21
2.2.2 q-gram index . 22
2.3 MATCHING . 23
3 PROPOSED ALGORITHMS 25
3.1 LEFT GREEDY MATCHER . 25
3.2 CHEATING MATCHER . 26
3.3 SIMPLE INDEX . 26
4 METHODOLOGY . 27
5 RESULTS . 31
5.1 SUFFIX ARRAY . 31
5.2 Q-GRAM INDEX . 32
5.3 LEFT GREEDY MATCHER . 35
6 CONSTRAINTS AND CONCLUSIONS 37

REFERENCES . 39
APPENDIX A – SIZES OF PREFERENCE LISTS 43
ANNEX A – SAMPLE ENTRIES FROM TEST CASE 11 . 49

15

1 INTRODUCTION

It is common that compilers must deal with name collisions, for example because
of the existence of modules or function overloading (1). To solve this problem, among
other things, they usually implement name mangling. Basically, this technique consists
of a series of transformations to the names present in the code to make them unique.
For instance, one could prepend the module name to a function name so that it does not
conflict with a namesake in another module; or add return and arguments type information
to the function name so that the language allows overloading. This last example can be
seen in Fig. 1, in which the mangled function name has the character ‘i’ of the return and
parameter type “int” preprended and appended to it, along with underscores as simple
delimiters.

Figure 1 – Example of code mangling

(a) Original code
int f(int x) {

return 2 * x;
}

(b) Mangled code
int _i_f_i(int x) {

return 2 * x;
}

Source – the authors

In the case of a compiler, the task of demangling a name is easily accomplished
and there are several tools to do this (for instance, undname.exe in Robertson et al. (1)).
That is because the mangling rules are commonly well defined and documented and do
not change frequently (Rossum; Warsaw; Coghlan (2), for example). So if a name is
given, it will be mangled by just following the rules. Likewise, given a mangled name, it
will be demangled by just following the rules in reverse. However, if the rules are unclear
or incomplete, the developer of the demangler will have a hard time building a tool that
correctly covers all the corners; and if they keep changing, the tool will demand constant
updating. Figure 2 illustrates an undocumented change in mangling rules.

Figure 2 – Example of different mangling rules

(a) Original mangling
int _i_f_i(int x) {

return 2 * x;
}

(b) New mangling
int _g_@4z_f@4z(int x) {

return 2 * x;
}

Source – the authors

Cadence Design Systems Inc. introduced a similar problem at the 2018 Interna-
tional Conference on Computer-Aided Design (ICCAD) CAD Contest (3). They report
that optimization tools change the names of design components, such as modules, ports

http://iccad-contest.org/2018/

16

and nets, to comply to implementation rules (such as 4, p. 179). The optimizations are
continuously applied from one stage to another, for example when moving from logic de-
sign to circuit design, and the rules they follow may change, either because it is a different
tool or a different stage. Wu; Huang; Hsu (3) also claim that mapping these changes
of names is important for formal equivalence checking and engineering change orders.
This would be an easy task for humans, but there are too many names for a human to
map, as recent CPU designs have billions of transistors (5). Hence their proposal for
the contest, in which we receive two sets L and R of strings such that R is the result of
applying an unknown transformation to L. We assume without loss of generality that it
is a single transformation, but it may be the composition of multiple ones. Additionally,
|L| = |R| = n. The task is to match every string l in L to its resulting transformation r

in R. Having no match between any two strings in L and any two strings in R, these sets
can be seen as the two partitions of a complete bipartite graph G = ({L ∪ R}, E). An
example of an instance of this task can be seen in Fig. 3 (only a few edges were drawn for
the sake of clarity). Solving it means choosing the edges in E that compose the correct
matching of the input strings. In order to decide what edges to choose, a string distance
function is used to assign weights to them and the ones with lowest values are considered
the correct choice.

Figure 3 – Example of an instance of the problem

“int pw2(int x)”

“int fib(int n)”

“int fac(int n)”

“int _i_fac_i(int n)”

“int _i_pw2_i(int x)”

“int _i_fib_i(int n)”

?

?

?

Source – the authors

However, additional challenges arise when we analyze the test cases provided by
the problem authors. They may be downloaded at http://iccad-contest.org/2018/
Problem_A/cases_all.tgz. Table 1 enumerates them along with their size and mini-
mum, maximum, arithmetic mean (or average; µ), standard deviation (σ), and quartiles1

of the lengths of their strings (values are for both L and R). Notice that they are numbered
starting from 1 in this work. The 24 training test cases are “labeled” (they are JSON
files containing the correct matching) and therefore allow us to compute the accuracy of
our solution. We say “training” because Wu; Huang; Hsu hinted at solutions that use
supervised machine learning (ML). We are not using ML and we have no training step.

1 Q2 is the median of the data

http://iccad-contest.org/2018/Problem_A/cases_all.tgz
http://iccad-contest.org/2018/Problem_A/cases_all.tgz

17

Still, we approached it in a more general way by not taking advantage of any intrinsic
feature of the test cases and their strings.

Table 1 – Sizes of the test cases provided by Wu; Huang; Hsu (3)

String lengths (m)

Test case Size (n) min. max. µ σ Q1 Q2 Q3

1st 1.1×105 3 150 64.99 21.22 52 65 79
2nd 1.1×104 2 287 84.73 60.50 36 64 116
3rd 1.1×104 3 287 87.16 60.44 36 66 116
4th 6.3×104 3 213 92.66 35.60 66 99 114
5th 3.4×104 2 107 22.64 9.71 17 21 26
6th 5.6×104 3 183 60.73 26.42 38 58 80
7th 2.4×104 4 115 39.24 22.93 17 36 57
8th 2.2×104 4 115 39.12 23.39 17 36 58
9th 5.6×104 3 101 47.84 16.17 37 47 57
10th 5.8×104 2 162 37.56 24.03 15 29 55
11th 7.1×104 1 93 38.51 15.33 24 36 49
12th 7.3×104 3 218 55.40 35.47 29 48 64
13th 8.0×104 1 1608 148.1 355.3 29 37 112
14th 8.5×104 2 266 65.04 30.42 40 65 78
15th 7.6×104 21 103 57.83 18.79 39 60 74
16th 8.0×104 3 147 36.38 16.00 30 35 39
17th 5.5×104 3 94 35.27 20.53 21 24 47
18th 2.4×105 1 263 96.76 52.57 54 89 145
19th 1.9×105 26 263 117.1 41.05 81 110 151
20th 5.4×104 2 112 42.27 16.13 32 40 53
21st 5.1×104 2 94 41.23 18.42 28 38 51
22nd 6.3×104 2 207 32.23 23.14 19 23 33
23rd 6.5×104 2 110 35.02 19.43 18 31 51
24th 5.6×104 2 92 15.35 9.26 11 13 13

Source – the authors

The first challenge is the size (n) of the datasets, which ranges from roughly 104

to 105, meaning that the biggest graph will have 2 × 105 vertices and each one of them
will have a 105-sized adjacency list. Therefore, because of the O(n2) space complexity of
storing all complete adjacency lists, 2× 1010 integers are needed in memory to represent
them. Considering the regular 32-bit integer, this totals approximately 74 GiB of RAM.
Another challenge is the fact that the vertices represent strings and we need to compare
them to build the weighted adjacency lists. For example, a distance function like the
edit distance that is O(m2), m being the length of the longest of the two strings involved
in the comparison, will lead to a time complexity of O(n2m2) to compare all elements
in L with all elements in R. Indeed, our initial implementation in Python 3 did not
terminate within one and a half hours of running the first test case on an Intel® Core™
i5-6300HQ (6) with 16 GB of RAM. This means that it did not even get to compute 20%
of all preference lists or else it would have run out of memory.

Hence there is a need to avoid the construction of complete adjacency lists. In other
words, avoid the inherent cartesian product comparison of the complete bipartite graph.

18

This means that we need to filter which of its n2 edges should be considered to compute
the string distance and then be matched against. The concepts and algorithms related to
string distance, filtering and bipartite matching that we used in our attempt to solve this
problem are reviewed in Chapter 2. In Chapter 3 are proposed additional algorithms that
are based on the review or will be used as a baseline to our results. Chapter 4 is where
we describe our methodology and more precisely define the three steps of our solution.
Then in Chapter 5 we present and analyze our results and in Chapter 6 we give our final
remarks.

19

2 LITERATURE REVIEW

In the following sections of this Chapter are presented the concepts and algorithms
relevant to the three steps of our approach. First, two string distance functions are
described and illustrated, the edit and q-gram distances, which may be used to compute
the weight of each edge in the problem graph; second, two indexing algorithms from
approximate string matching to filter the edges from the problem graph, the suffix array
and the q-gram index; last, an overview of the theory behind bipartite matching and what
is called stable marriage, wherein the matching algorithms derive from.

2.1 STRING DISTANCE

2.1.1 Edit distance

We consider the edit distance as seen in Wagner; Fischer (7). It is defined as
follows: the distance between strings s1 and s2 is the number of operations needed to
transform s1 into s2. The allowed operations are insertion, deletion and substitution and
are defined for a single character only. All operations are performed on s1. A function
Cost(a, b) (called γ(a → b) by the authors) is also needed to assign a cost to these
operations, wherein a and b are characters or ϵ (the empty string). If both are characters,
the operation is a substitution (from a to b); if only a is a character, the operation is a
deletion (of a); if only b is a character, the operation is an insertion (of b).

Algorithm 1 – Edit distance algorithm

1 function WF(s1, s2)
2 D[i, 0]← i for 0 ≤ i ≤ |s1|
3 D[0, j]← j for 0 ≤ j ≤ |s2|
4 for 1 ≤ i ≤ |s1| do
5 for 1 ≤ j ≤ |s2| do
6 substitution← D[i− 1, j − 1] + Cost(s1[i− 1], s2[j − 1])
7 deletion← D[i− 1, j] + Cost(s1[i− 1], ϵ)
8 insertion← D[i, j − 1] + Cost(ϵ, s2[j − 1])
9 D[i, j]←Min(substitution, deletion, insertion)

10 return D[|s1|, |s2|]
Source – the authors adaptation of Wagner; Fischer (7, p. 171, 172)

For this setting, the authors provide an O(|s1||s2|) algorithm using dynamic pro-
gramming (or O(m2) for short, wherein m = Max(|s1|, |s2|)), which is presented in Algo-
rithm 1. Let us call it WF after Wagner; Fischer. It uses a table named D with |s1|+ 1

rows and |s2|+1 columns to store the state of the dynamic programming. The last column
of the last row contains the final edit distance. Table D can also be used to retrieve the
operations that would transform s1 into s2, if they are needed. Our cost function is simply

20

Cost(a, b) = 1 if a ̸= b and 0 if a = b (same characters, no operation). This method is
also sometimes called Levenshtein distance or simple edit distance (8, p. 32, 37). A few
examples are given below:

a) WF(“french”, “fries”) = 0 + 0 + 1 + 0 + 1 + 1 + 1 = 4, which are for keeping
“fr”, inserting ‘i’, keeping ‘e’, substituting ‘n’ by ‘s’ and deleting “ch”;

b) WF(ϵ, s) = |s| for any string s ̸= ϵ for inserting all its characters;

c) WF(s, ϵ) = |s| for any string s ̸= ϵ for deleting all its characters.

2.1.2 q-gram distance

Looking for alternatives to the edit distance and mainly encouraged by its costly
time complexity, Ukkonen (9) studied approximate string matching with two other dis-
tance measures. One of them was the q-gram distance, which is considered here.

A q-gram g is a substring of some string s such that the length of g is q. The
set Pq(s) of all q-grams found in s is called its profile, and Pq(s)[g] is the number of
occurrences of g. Thus, the q-gram distance Dq(s1, s2) between strings s1 and s2 is
described by Eq. (1).

Dq(s1, s2) =
∑

g∈{Pq(s1)∩Pq(s2)}

|Pq(s1)[g]− Pq(s2)[g]|

+
∑

g∈{Pq(s1)\Pq(s2)}

Pq(s1)[g]

+
∑

g∈{Pq(s2)\Pq(s1)}

Pq(s2)[g]

(1)

As an example, given s1 = “001010” and s2 = “110101”, then

P2(s1) = {“00” : 1, “01” : 2, “10” : 2}

P2(s2) = {“01” : 2, “10” : 2, “11” : 1}

D2(s1, s2) = |2− 2|+ |2− 2|+ 1 + 1 = 2.

Different q-grams may overlap, but are all contiguous. Thus it is possible to use
a sliding window algorithm to compute Pq(s). It is a single pass of a window of width q

ranging from s[i] to s[i + q − 1] while 0 ≤ i ≤ |s| − q. By using hash tables to represent
profiles, this computation may be done in O(|s|). To evaluate Dq(s1, s2), it suffices to
calculate the profiles of s1 and s2 and then perform the summation presented in Eq. (1).
Therefore the total complexity is O(|s1|+ |s2|).

21

2.2 FILTERS

2.2.1 Suffix array

Motivated by the problem of finding all occurrences of some string p (often called
pattern) in a large text T , Manber; Myers (10) introduced the suffix array. It is a data
structure that stores a sorted array of all suffixes of T . It is an alternative to suffix
trees1 with a construction that is slower, yet much simpler. Furthermore, the lower space
complexity and very competitive query time complexity makes it a better option in many
applications.

The simplest algorithm to build a suffix array over a text T is a direct encoding
of its description: compute all suffixes of T and sort them. Hence, its time complexity is
O(m2 logm), wherein m = |T |. A suffix array does not need to actually store the suffixes,
as integer references to T are sufficient. Since any T has m suffixes, the space complexity
is O(m). Although a suffix tree also has linear space complexity, its hidden constant is
larger (16, p. 54).

However, if T is actually an n-sized list of strings, compute all suffixes of all strings
in T and sort them. Thus, the time complexity becomes O(nm2 lognm) because we have
nm suffixes that take O(m) time to compare, m now being the length of the longest
string in T . For all s in T , we store a pair {j, k} such that T [j] = s and s[k . . . |s|] is the
(k + 1)-th suffix of s. This yields a space complexity of O(S), wherein S =

∑
s∈T |s|.

Having built the suffix array, we can search it for all occurrences of p in T via two
binary searches: one for the lower bound and one for the upper bound. More specifically,
one for the smallest and one for the largest index i such that the prefix of the (i + 1)-th
suffix matches p. Each binary search is O(|p| lognm), which is a dramatic improvement
over a naive O(|p|nm) search.

Table 2 illustrates the suffix array (SA) for T = [“GATA”, “GACA”] and the result
(in bold) of a search for p = “GA” (j and k are explicit for convenience).

Table 2 – Example of suffix array and results of a search

i SA[i] T[j] s[k . . . |s|]

0 {j : 0, k : 3} GATA A
1 {j : 1, k : 3} GACA A
2 {j : 1, k : 1} GACA ACA
3 {j : 0, k : 1} GATA ATA
4 {j : 1, k : 2} GACA CA
5 {j : 1, k : 0} GACA GACA
6 {j : 0, k : 0} GATA GATA
7 {j : 0, k : 2} GATA TA

Source – the authors adaptation of Halim; Halim (17, p. 260)

1 For more information on suffix trees, see (11, 12, 13, 14, 15).

22

2.2.2 q-gram index

The idea of the q-gram index is based on Navarro; Baeza-Yates (18). For every s

in a list T of strings, the index is of s in T and the number of occurrences of each q-gram
g in s’s profile are stored in a hash table indexed by g. In other words, the profile Pq(s)

is computed for all s in T and a pair {Pq(s)[g], is} is stored in a hash table indexed by g

for all g in Pq(s). Every resulting list, one for each q-gram, is then sorted in descending
order to speed up queries.

Querying the index starts with the construction of the profile Pq(p) of a query
p. Then the index is searched for all g in Pq(p), which returns a possibly empty list of
candidate matches. By the construction of the index, all candidates have g in common
with p. A candidate is immediately disregarded if its number of occurrences of g is less
than the occurrences of g in the query multiplied by a configurable constant thresholdg,
that is thresholdg × Pq(p)[g].

Candidates also have their appearances counted. Starting from 0, a candidate
has its appearance count increased every time it appears in a search result and is not
immediately disregarded. An appearance count count of a candidate c means that
p and c have count q-grams in common (satisfying the threshold). More specifically,
|Pq(p) ∩ Pq(c)| = count.

After searching for all g in Pq(p), candidates with a total appearance count less
than thresholdp × |Pq(p)| are also disregarded, that is, candidates with less than a factor
of thresholdp of q-grams in common with p are dismissed. The indices pointed by the
candidates that satisfied both thresholds are returned as the results of the query.

Table 3 illustrates the q-gram index (QGI) for

T = [“0010100”, “1101011”, “0010001”, “111”, “111011”]

with q = 2 and the result (in bold) of a search for p = “00010” with thresholdg = 0.5

and thresholdp = 1.0.

Table 3 – Example of q-gram index and
results of a search

g QGI[g]

“00” {3, 2}, {2, 0}
“01” {2, 0}, {2, 1}, {2, 2}, {1, 4}
“10” {2, 0}, {2, 1}, {1, 2}, {1, 4}
“11” {3, 4}, {2, 1}, {2, 3}

Source – the authors

Notice that P2(p) = {“00” : 2, “01” : 1, “10” : 1}. Consequently, indices 0 and 2
are returned as the results of the query because the q-gram count of T[0] and T[2] for

23

“00”, “01” and “10” and the fact that they have these three q-grams in their profile make
them pass both thresholds. This is in contrast to the other indexed strings that fail at
the second one, because no other string has q-gram “00” and thresholdp = 1.0 requires
that all candidates have at least all q-grams that p has.

2.3 MATCHING

As seen in Diestel (19), the problem of finding the largest matching of one set of
independent2 vertices to another is called maximum cardinality bipartite matching. More
precisely, a matching maps exactly one vertex in the first set to one vertex in the second
set and a maximum matching has the largest possible number of edges (or mappings; or
matched vertices). By Hall’s theorem (1935), the necessary and sufficient condition for a
matching to exist in a bipartite graph G = ({L ∪ R}, E) is that |S| ≤ |N(S)| for every
S ⊆ L (19, p. 38), wherein N(S) is the set of neighbour (adjacent) vertices of S (also
called its neighbourhood). A complete bipartite graph clearly satisfies this condition.

In our case, though, the vertices are not indifferent of their match (see Fig. 4: the
drawn edges compose the only correct answer). This leads us to the concept of stable
matchings (or stable marriages). They are commonly presented as follows: we have a set
of n men and a set of n women and each one has a preference list ranking every person
of the opposite sex. The task is to marry every man to a woman in a way that there
is no pair of people in which both prefer each other to their current partners (20, 21,
22). The classic famous work that accomplishes this is Gale; Shapley (20). The authors
proved that there is at least one matching that obeys these rules for every instance of
this problem (therefore there always exists a stable marriage) and their O(n2) solution,
presented in Algorithm 2, is asymptotically optimal in time complexity.

Figure 4 – Example of a correct matching

“int pw2(int x)”

“int fib(int n)”

“int fac(int n)”

“int _i_fac_i(int n)”

“int _i_pw2_i(int x)”

“int _i_fib_i(int n)”

Source – the authors

However, an important thing to realize is that this classic algorithm does not handle
the case of incomplete preference lists (22, 23). The required ranking of every person of
the opposite sex leads to a complete bipartite graph, as preference lists can be seen as the
2 “[…] a set of vertices or of edges is called independent if no two of its elements are adjacent.” (19, p. 3)

24

adjacency lists (neighbourhoods) of each vertex, satisfying Hall’s theorem. Gale; Shapley
proved that, given this condition, a stable marriage always exists no matter how preference
lists are arranged. But if they are incomplete, Hall’s theorem is not necessarily satisfied
and there is no guarantee for a stable marriage and even a matching to exist. For these
reasons, an alternative algorithm is proposed in Chapter 3.

Algorithm 2 – Stable marriage algorithm

1 assign each person to be free
2 while some man m is free do
3 w ← first woman in m’s preference list
4 if some man m′ is engaged to w then
5 set m′ free
6 m becomes engaged to w
7 for each successor m′ of m in w’s preference list do
8 remove m′ from w’s preference list
9 remove w from m′’s preference list

10 output engagements
Source – Irving (22, p. 264)

25

3 PROPOSED ALGORITHMS

Apart from the algorithms introduced in the literature review, in this Chapter
are presented three more algorithms: Left Greedy Matcher (LGM), based on the review;
cheating matcher, a baseline to LGM; and simple index, a baseline to suffix array and
q-gram index.

3.1 LEFT GREEDY MATCHER

With the limitations of the classic stable marriage algorithm in mind, the Left
Greedy Matcher (LGM) is obtained by applying simple modifications to the Gale; Shapley
algorithm to make it handle incomplete preference lists. It is represented in Algorithm 3
and works as follows: all people are initially free and we seek a stable marriage while
there is a free man m, as in the original algorithm. Then we get and remove the most
preferred woman w from m’s preference list. If w is already married to some other man
m′, we check if marrying her to m is less costly than leaving her with m′ and we change
them if it is. Notice that we consider the cost of marrying m to w, not only the order
in which w appears in m’s preferences. Also, if we changed the marriage, we only set m′

free if his preference list is not already empty. Finally, if w was not originally engaged,
we simply marry her to m.

Algorithm 3 – Left Greedy Matcher algorithm

1 assign each person to be free
2 while some man m is free do
3 w ← first woman in m’s preference list
4 remove w from m’s preference list
5 if some man m′ is engaged to w then
6 if cost of {m,w} < {m′, w} then
7 set m′ free if his preference list is not empty
8 else
9 continue

10 m becomes engaged to w

11 output engagements
Source – the authors

The cost of a couple may be determined in many ways. In this work, it is through
the rating that each person gives to everyone in his or her preference list (through the
string distance functions already described and in accordance to what is explained in
Chapter 4). Despite that, in this specific algorithm, only the ratings of m are taken into
account and a marriage is changed as soon as a less costly one is found (hence the name).

The biggest difference between LGM and the original stable marriage algorithm
is that LGM is clearly not guaranteed to find a stable marriage, because incomplete
preference lists do not necessarily satisfy Hall’s theorem. Beside that, a woman is removed

26

from a man’s preference list exactly in the iteration she is proposed. These removals and
the fact that a recently disengaged man is not again considered free if his preference
list has become empty guarantees the termination of the algorithm. Additionally, its
complexity is O(n2) because at every iteration an element is removed from a preference
list and any of the n preference lists has at most n elements.

3.2 CHEATING MATCHER

On the other hand, the cheating matcher (CM) is an extra matching algorithm
that is built to know the answer of the matching from an already mapped input. It
always marries the correct couple {m, w} if w is present in m’s preference list. Therefore
it represents an upper bound for any matching algorithm because it always yields the
optimal possible marriage. Consequently, it allows the assessment of the results of a filter
(because it cannot be responsible for a bad result) and the decrease of accuracy caused
by LGM.

3.3 SIMPLE INDEX

There is also a lower bound for the filtering step and it is called simple index.
Conceptually, it just stores a sorted list of the n input strings and searches for candidates
with the same binary searches as the suffix array. In fact, it is implemented as a suffix
array without the suffixes, resulting in a time complexity of O(nm logn) to build it and
of O(|p| logn) to search it, wherein m is the length of the longest indexed string and p

is a query string. Being the simplest technique, its results will be compared to the other
two filters to analyze their cost-benefit.

27

4 METHODOLOGY

All the code for this work can be found in https://github.com/ggabriel96/
mapnames. It is written in Python 3 and is explained below.

A framework for benchmarking and comparing techniques was built. It allows us to
easily switch between algorithms and set their parameters. It is illustrated by Algorithm 4
and works as follows: we first parse the command-line arguments to get the settings that
will determine: dataset; bipartite matcher; filter; string distance function; parameters of
the algorithms; and output destination. Then we call the actual benchmarking function
that returns the results and we output them. The code for both the framework and the
actual benchmarking function are in the file named benchmark.py. This is the entry
file and all available options and their descriptions may be consulted running python
benchmark.py --help.

Algorithm 4 – Framework algorithm

1 settings← ParseCommandLine()
2 dataset← LoadTestCase(settings)
3 Matcher,Filter,Distance← SelectAlgorithms(settings)
4 results← Benchmark(dataset, Matcher, Filter, Distance)
5 Output(results, settings)

Source – the authors

There are several algorithms available to choose from and they work and can be
set independently. For bipartite matcher, they are LGM and CM; the filter is one of
simple index, suffix array or q-gram index; and the string distance function may be edit
distance or q-gram distance. Matchers can be found in the file mapnames/graph.py and
filters and string distances in mapnames/string.py.

Algorithm 5 shows the benchmarking function. It starts by splitting the dataset,
which is a JSON file, into the left (L) and right (R) sets of strings. Right before the main
part, it stores the current time so we can later evaluate the total run time of our solution.
The main part is where the actual proposed approach takes place, divided in three steps:
the computation of the filters, preference lists and matching. Then the total run time
and accuracy are also calculated and we return the results. The accuracy is calculated by
counting the number of correct matches and dividing that by the size of the input (n).
Unmatched strings are counted as wrong matches.

In the first step of our approach we build indexes of the input strings: one on L

to be queried with an r from R and one on R to be queried with an l from L. Each
query returns a list of indices pointing to the indexed strings. All indices in the result
of a query are considered admissible for the second step: the computation of preference
lists (Algorithm 6). It is quite simple: call the distance function with every u in U paired
with each admissible v in the result of filtering V and sort the list. Parameters U and

https://github.com/ggabriel96/mapnames
https://github.com/ggabriel96/mapnames
https://github.com/ggabriel96/mapnames/blob/master/benchmark.py
https://github.com/ggabriel96/mapnames/blob/master/mapnames/graph.py
https://github.com/ggabriel96/mapnames/blob/master/mapnames/string.py

28

Algorithm 5 – Benchmarking algorithm

1 function Benchmark(settings, Matcher, Filter, Distance)
2 L,R← Split(dataset)
3 start← CurrentTime()
4 FilterOnL← Filter(L)
5 FilterOnR← Filter(R)
6 BuildPreferences(L, R, FilterOnR, Distance)
7 BuildPreferences(R, L, FilterOnL, Distance)
8 matching ←Matcher(L, R)
9 time← start−CurrentTime()

10 accuracy ← Accuracy(matching, dataset)
11 return matching, accuracy, time

Source – the authors

V alternate between L and R in the calls from Algorithm 5. The value returned by the
distance function represents the rating that u gives to v. Finally, in the third step, the
bipartite matching algorithm is invoked with L and R.

Algorithm 6 – Algorithm to build preference lists

1 function BuildPreferences(U, V, FilterOnV, Distance)
2 for all u ∈ U do
3 admissible← FilterOnV(u)
4 up ← Distance(u, v) for all v ∈ {V ∩ admissible}
5 Sort(up) » up is the preference list of u

Source – the authors

Figure 5 illustrates the logic procedure of the main part of our approach with its
three steps, namely filtering vertices, computing preference lists with string distances, and
bipartite matching.

29

Figure 5 – Illustrative diagram of our approach

Load test case

Choose filter

Simple index Suffix array q-gram index

Apply filter

Choose distance function

q-gram distance Edit distance

Compute preference lists

Choose matching algorithm

Cheating matcher Left Greedy Matcher Gale; Shapley

Match graph

Source – the authors

31

5 RESULTS

In order to analyze the impact of filtering and matching algorithms independently,
the results of the cheating matcher (CM) with the three possible filters are discussed first,
in Sections 5.1 and 5.2. The results of the Left Greedy Matcher (LGM) will be compared
to CM with suffix array in Section 5.3. Even though all tests were run with q-gram
distance as string distance function (it is much faster than edit distance), it will only
interfere with results when matching with LGM because CM always chooses the correct
answer if it is available.

An utility executable script named benchmark.sh was created to automatically
execute the benchmark for all test cases. The command that was issued inside its loop
to obtain the results are listed alongside them. All benchmarks were executed in a server
provided by the Federal University of Fronteira Sul with an Intel® Xeon® E7-4850 (24)
and 128 GB of RAM.

5.1 SUFFIX ARRAY

Figure 6 presents a comparison of the total run time in seconds between filtering
with simple index and suffix array. We can see that the run time overhead of the suffix
array is mainly negligible, with the exceptions of test cases 18 and 19, which are the
largest ones in size (n) and are among the largest in string length (m); and test case 13,
the largest in both maximum and average string length. Larger run time gaps are due to
longer strings, which evince the difference in time complexity between the algorithms.

Figure 6 – Run time of CM with simple index and suffix array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

100

200

300

400

500

600

Test case

Se
co

nd
s

Simple index Suffix array

Source – the authors

https://github.com/ggabriel96/mapnames/blob/master/benchmark.sh

32

Figure 7 presents a comparison of the achieved accuracy between filtering with
simple index and suffix array. The plot shows us that both algorithms are not being able
to consistently filter candidates without also discarding the correct answers to queries.
Despite that, Tables 5 and 6 in Appendix A show us that, for both filters, at least 75%
of the preference lists of all test cases have size less than or qual to 2 and the average
size of preference lists is almost always less than 3 (with the exceptions of suffix array in
test cases 13 and 18 with averages of 10.28 and 6.19, respectively). This is an immensely
desirable behaviour if only they were not filtering out the correct answers, as previously
mentioned. The main differences between them is that simple index has lower maximums
and standard deviations (σ).

Figure 7 – Accuracy of CM with simple index and suffix array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

Test case

A
cc

ur
ac

y

Simple index Suffix array

Source – the authors

Results for the simple index were obtained by issuing the command below. Mean-
while, for the suffix array, the only difference is --filter sa.

python benchmark.py ${folder}/${file} \
--comparison --matcher c --filter si --distance qg -q 2 \
--outdir cmpf

5.2 Q-GRAM INDEX

The second comparison is between all three filters. It is separated from the previous
one because the q-gram index is much slower to query than simple index and suffix array.
Therefore, this comparison was run for a random subset of size 1500 of the test cases,

33

sampled with the seed 7814958244. Parameters thresholdg and thresholdp are fixed at
0.5 and q = 2.

Figure 8 presents a comparison of the total run time in seconds and Fig. 9 of the
achieved accuracy between filtering with simple index, suffix array and q-gram index,
while Tables 7 to 9 in Appendix A respectively describe their resulting preference list
sizes. Those sizes are evidence that q-gram index is much more “sensitive” to variations
in the input, in the sense that there are many more empty preference lists and standard
deviations are overall much higher than simple index and suffix array. And although it
scored a higher accuracy in 14 of the 24 test cases, the run time comparison suggests that
its advantage is not scalable.

Figure 8 – Run time of CM with all filters (random sample)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

50

100

150

200

250

Test case (sampled)

Se
co

nd
s

Simple index Suffix array q-gram index

Source – the authors

Experimental tests varying thresholdg and thresholdp indicate that, in its current
form, q-gram index generally maintains higher accuracies but never gets comparably fast
as the other two filters and still has an accuracy upper bound that is not 1.0. For example,
this happens with test case 11 with a peak accuracy of 0.706 with the same command
as above. This behaviour is observed by setting (in code) both thresholds to zero, which
means that there is no restriction to a candidate beyond just having a q-gram in common
with the query. We say that this is an indication because these tests were not run on
whole test cases, but the program would nevertheless take too long to run (and probably
consume too much memory) otherwise.

34

Figure 9 – Accuracy of CM with all filters (random sample)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

Test case (sampled)

A
cc

ur
ac

y
Simple index Suffix array q-gram index

Source – the authors

The results above were obtained by issuing the command below, but varying
--filter over si, sa and qg.

python benchmark.py ${folder}/${file} \
--comparison --matcher c --filter qg --distance qg -q 2 \
--outdir cmpf/rand --size 1500 --seed 7814958244

35

5.3 LEFT GREEDY MATCHER

Finally, in this section LGM is compared to CM. The last benchmark, of LGM,
was executed as below (CM has already been benchmarked with suffix array in our first
comparison).

python benchmark.py ${folder}/${file} \
--comparison --matcher lgm --filter sa --distance qg -q 2 \
--outdir cmpm

Figure 10 presents a comparison of the total run time in seconds between maching
with CM and LGM. It is noticeable that they barely differ, indicating that the run time
cost of matching algorithms is negligible when compared to that of computing preference
lists (which include building and invoking the filters and calculating string distances).
Hence the cost of the matching step is not of our concern.

Figure 10 – Run time of CM and LGM with suffix array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

100

200

300

400

500

600

Test case

Se
co

nd
s

CM LGM

Source – the authors

36

Figure 11 presents a comparison of the achieved accuracy between maching with
CM and LGM. Generally, 19 test cases have a decrease in accuracy below 5%. The ones
that have it fallen beyond 5% are test cases 4, 6, 12, 18 and 19 (see Table 4; values are
rounded). However, the accuracy limitations caused by the poor results of the filtering
step inhibited a proper evaluation of the accuracy compromises caused by LGM or q-gram
distance.

Figure 11 – Accuracy of CM and LGM with suffix array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1

Test case

A
cc

ur
ac

y

CM LGM

Source – the authors

Table 4 – Test cases with accuracy
difference beyond 5%

Accuracy

Test case CM LGM

4th 0.21 0.16
6th 0.78 0.66
12th 0.07 0.01
18th 0.39 0.13
19th 0.44 0.12

Source – the authors

37

6 CONSTRAINTS AND CONCLUSIONS

At the 2018 ICCAD CAD Contest was presented a problem (3) that, given two sets
L and R of design component names such that R is the result of applying an unknown
transformation to L, required the matching of every name in L to its corresponding
transformed name in R with the aid of artificial intelligence (more specifically, supervised
machine learning). In this work, we presented a deterministic approach that used graph
theory and approximate string matching to try to compute the correct matchings. We
have not used supervised machine learning and disregarded solutions that took more than
15 minutes (900 seconds) to run or used more than approximately 16 GiB of RAM. This
is why a filtering step was needed before the matching and q-gram distance was used
instead of edit distance. Furthermore, parallel computing was not explored because we
kept the rule from the contest that did not allow it.

The most significant result of this work is that the filtering step is the bottleneck
of the proposed methodology. Matching algorithms that require a complete bipartite
graph cannot be used because of time or memory. Meanwhile, the ones that work with
an incomplete bipartite graph have failed to achieve 100% of accuracy because the index
that filtered the edges that should be considered for matching were inaccurate. This is
demonstrated by the poor results of the cheating matcher (CM). As we have seen, CM is
built from the input and thus always matches the correct pair of strings. Its purpose was
to allow us to independently assess the impact of a filter and of a different matcher. By
cheating and always choosing the correct pair of strings, CM achieves 100% of accuracy
on a complete bipartite graph and would also achieve it on an incomplete bipartite graph
if the edges connecting the correct pair of strings were present. Hence, if CM does not
yield the final correct matching, it means that the graph does not have those edges. Since
the index is responsible for filtering the edges, it is the cause of the lack of accuracy of
the whole solution. In addition, it prevents a proper reasoning about the impact of the
Left Greedy Matcher (LGM) and the string distance functions (mainly q-gram distance)
because we cannot know if they would perform better with an index that did not filter
out the edges connecting the correct pair of strings.

In Annex A are listed a few pairs of strings from test case 11 that the filters
presented in this work cannot deal with. Notice that there is no apparent relationship
from the original to the transformed strings. There are also cases where original strings are
very long and transformed strings are very short, causing the loss of too much information.
This happens, for instance, in test case 13 with strings as long as 1600 characters being
reduced to just 60. Entries like these are plenty in the input files. Despite that, the works
of the winning teams of the contest managed to achieve 100% of accuracy. When they
are published, it will be possible to study their solutions and perhaps better understand
the compromises of our choices in order to propose improvements to our approach.

39

REFERENCES

1 ROBERTSON, Colin et al. Decorated Names. Microsoft Corporation. 4 Nov.
2016. Available from: <https://docs.microsoft.com/en-
us/cpp/build/reference/decorated-names>. Visited on: 2 May 2018.

2 ROSSUM, Guido van; WARSAW, Barry; COGHLAN, Nick. Style Guide for
Python Code. PEP 8. 1 Aug. 2013. Available from:
<https://www.python.org/dev/peps/pep-0008/>. Visited on: 11 May 2018.

3 WU, Chi-An; HUANG, Ching-Yi; HSU, Chih-Jen. Problem A: Smart EC:
Program-Building for Name Mapping. Version 2018-04-25. CAD Contest @
ICCAD. Cadence Design Systems, Inc. 2018. Available from: <http://iccad-
contest.org/2018/Problem_A/2018ICCADContest_ProblemA.pdf>. Visited on:
11 May 2018.

4 BHATNAGAR, Himanshu. Advanced ASIC Chip Synthesis: Using Synopsys®
Design Compiler™ Physical Compiler™ and PrimeTime®. 2. ed. [S.l.]: Springer US,
2002. 328 pp. ISBN 978-0-306-47507-8. DOI: 10.1007/b117024.

5 QUALCOMM Datacenter Technologies Announces Commercial Shipment of
Qualcomm Centriq 2400 – The World’s First 10nm Server Processor and Highest
Performance Arm-based Server Processor Family Ever Designed. Qualcomm
Technologies, Inc. 8 Nov. 2017. Available from:
<https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-
datacenter-technologies-announces-commercial-shipment-qualcomm>.
Visited on: 5 May 2018.

6 INTEL® Core™ i5-6300HQ Processor. Intel Corporation. 2015. Available from:
<https://ark.intel.com/products/88959/Intel-Core-i5-6300HQ-Processor-
6M-Cache-up-to-3_20-GHz>. Visited on: 3 June 2018.

7 WAGNER, Robert A.; FISCHER, Michael J. The String-to-String Correction
Problem. Journal of the ACM, ACM, New York, NY, USA, v. 21, n. 1,
p. 168–173, 6 pp., Jan. 1974. ISSN 0004-5411. DOI: 10.1145/321796.321811.

8 NAVARRO, Gonzalo. A Guided Tour to Approximate String Matching. ACM
Comput. Surv., ACM, New York, NY, USA, v. 33, n. 1, p. 31–88, Mar. 2001.
ISSN 0360-0300. DOI: 10.1145/375360.375365.

9 UKKONEN, Esko. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science, v. 92, n. 1, p. 191–211, 1992. ISSN
0304-3975. DOI: 10.1016/0304-3975(92)90143-4.

https://docs.microsoft.com/en-us/cpp/build/reference/decorated-names
https://docs.microsoft.com/en-us/cpp/build/reference/decorated-names
https://www.python.org/dev/peps/pep-0008/
http://iccad-contest.org/2018/Problem_A/2018ICCADContest_ProblemA.pdf
http://iccad-contest.org/2018/Problem_A/2018ICCADContest_ProblemA.pdf
https://doi.org/10.1007/b117024
https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-datacenter-technologies-announces-commercial-shipment-qualcomm
https://www.qualcomm.com/news/releases/2017/11/08/qualcomm-datacenter-technologies-announces-commercial-shipment-qualcomm
https://ark.intel.com/products/88959/Intel-Core-i5-6300HQ-Processor-6M-Cache-up-to-3_20-GHz
https://ark.intel.com/products/88959/Intel-Core-i5-6300HQ-Processor-6M-Cache-up-to-3_20-GHz
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/0304-3975(92)90143-4

40

10 MANBER, Udi; MYERS, Gene. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, v. 22, n. 5, p. 935–948, 1993. DOI:
10.1137/0222058.

11 APOSTOLICO, Alberto. The Myriad Virtues of Subword Trees. In: .
Combinatorial Algorithms on Words. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1985. p. 85–96. ISBN 978-3-642-82456-2.

12 GALIL, Z; GIANCARLO, R. Data structures and algorithms for approximate
string matching. Journal of Complexity, v. 4, n. 1, p. 33–72, 1988. ISSN
0885-064X. DOI: 10.1016/0885-064X(88)90008-8.

13 UKKONEN, Esko. Approximate string-matching over suffix trees. In: .
Combinatorial Pattern Matching. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993. p. 228–242. ISBN 978-3-540-47732-7.

14 GUSFIELD, Dan. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. [S.l.]: Cambridge University Press, 1997. DOI:
10.1017/CBO9780511574931.

15 COLE, Richard; GOTTLIEB, Lee-Ad; LEWENSTEIN, Moshe. Dictionary
Matching and Indexing with Errors and Don’t Cares. In: PROCEEDINGS of the
Thirty-sixth Annual ACM Symposium on Theory of Computing. Chicago, IL, USA:
ACM, 2004. (STOC ’04), p. 91–100. ISBN 1-58113-852-0. DOI:
10.1145/1007352.1007374.

16 ABOUELHODA, Mohamed Ibrahim; KURTZ, Stefan; OHLEBUSCH, Enno.
Replacing suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, v. 2, n. 1, p. 53–86, 2004. The 9th International Symposium on String
Processing and Information Retrieval. ISSN 1570-8667. DOI:
10.1016/S1570-8667(03)00065-0.

17 HALIM, Steven; HALIM, Felix. Competitive Programming: The New Lower
Bound of Programming Contests. 3. ed. [S.l.]: Lulu, 2013. 447 pp. Available from:
<https://cpbook.net>.

18 NAVARRO, Gonzalo; BAEZA-YATES, Ricardo. A Practical q-Gram Index for Text
Retrieval Allowing Errors. CLEI Electronic Journal, v. 1, n. 2, 1998.

19 DIESTEL, Reihard. Graph Theory. 5. ed. [S.l.]: Springer-Verlag Berlin
Heidelberg, 2017. v. 173. 429 pp. (Graduate Texts in Mathematics). ISBN
978-3-662-53622-3. DOI: 10.1007/978-3-662-53622-3.

20 GALE, D.; SHAPLEY, L. S. College Admissions and the Stability of Marriage.
The American Mathematical Monthly, Mathematical Association of America,
v. 69, n. 1, p. 9–15, 1962. DOI: 10.2307/2312726.

https://doi.org/10.1137/0222058
https://doi.org/10.1016/0885-064X(88)90008-8
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1016/S1570-8667(03)00065-0
https://cpbook.net
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.2307/2312726

41

21 GUSFIELD, Dan. Three fast algorithms for four problems in stable marriage.
SIAM Journal on Computing, SIAM, v. 16, n. 1, p. 111–128, 1987. DOI:
10.1137/0216010.

22 IRVING, Robert W. Stable marriage and indifference. Discrete Applied
Mathematics, v. 48, n. 3, p. 261–272, 1994. DOI:
10.1016/0166-218X(92)00179-P.

23 IWAMA, Kazuo et al. Stable Marriage with Incomplete Lists and Ties. In:
. Automata, Languages and Programming. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1999. p. 443–452. ISBN 978-3-540-48523-0.

24 INTEL® Xeon® Processor E7-4850. Intel Corporation. 2011. Available from:
<https://ark.intel.com/products/53574/Intel-Xeon-Processor-E7-4850-
24M-Cache-2-00-GHz-6-40-GT-s-Intel-QPI->. Visited on: 25 Nov. 2018.

https://doi.org/10.1137/0216010
https://doi.org/10.1016/0166-218X(92)00179-P
https://ark.intel.com/products/53574/Intel-Xeon-Processor-E7-4850-24M-Cache-2-00-GHz-6-40-GT-s-Intel-QPI-
https://ark.intel.com/products/53574/Intel-Xeon-Processor-E7-4850-24M-Cache-2-00-GHz-6-40-GT-s-Intel-QPI-

43

APPENDIX A – SIZES OF PREFERENCE LISTS

Table 5 – Sizes of preference lists using simple index

Sizes of preference lists

Test case min. max. µ σ Q1 Q2 Q3

1st 1 2 1.48 0.50 1.00 1.00 2.00
2nd 1 2 1.95 0.22 2.00 2.00 2.00
3rd 1 2 1.98 0.14 2.00 2.00 2.00
4th 1 33 1.90 0.51 2.00 2.00 2.00
5th 1 618 1.68 3.44 1.00 2.00 2.00
6th 1 3691 1.86 16.52 1.00 2.00 2.00
7th 1 55 1.56 1.58 1.00 1.00 2.00
8th 1 55 1.55 1.62 1.00 1.00 2.00
9th 1 454 1.44 1.98 1.00 1.00 2.00
10th 1 18 2.00 0.05 2.00 2.00 2.00
11th 2 3 2.00 0.00 2.00 2.00 2.00
12th 2 2 2.00 0.00 2.00 2.00 2.00
13th 1 234 2.02 1.45 2.00 2.00 2.00
14th 1 144 2.00 0.35 2.00 2.00 2.00
15th 2 2 2.00 0.00 2.00 2.00 2.00
16th 2 21 2.00 0.05 2.00 2.00 2.00
17th 1 2 2.00 0.04 2.00 2.00 2.00
18th 1 20731 2.06 29.83 2.00 2.00 2.00
19th 2 2 2.00 0.00 2.00 2.00 2.00
20th 2 3 2.00 0.00 2.00 2.00 2.00
21st 1 2 2.00 0.01 2.00 2.00 2.00
22nd 2 2 2.00 0.00 2.00 2.00 2.00
23rd 1 750 2.02 2.22 2.00 2.00 2.00
24th 1 1000 2.24 15.46 2.00 2.00 2.00

Source – the authors

44

Table 6 – Sizes of preference lists using suffix array

Sizes of preference lists

Test case min. max. µ σ Q1 Q2 Q3

1st 1 33 1.48 0.51 1.00 1.00 2.00
2nd 1 233 1.98 2.00 2.00 2.00 2.00
3rd 1 2 1.98 0.14 2.00 2.00 2.00
4th 1 298 1.93 1.63 2.00 2.00 2.00
5th 1 1727 1.75 9.48 1.00 2.00 2.00
6th 1 3691 2.11 17.04 1.00 2.00 2.00
7th 1 429 1.58 3.20 1.00 1.00 2.00
8th 1 429 1.57 3.31 1.00 1.00 2.00
9th 1 1218 1.47 5.52 1.00 1.00 2.00
10th 1 70 2.00 0.20 2.00 2.00 2.00
11th 2 36416 2.52 137.07 2.00 2.00 2.00
12th 1 9 2.00 0.02 2.00 2.00 2.00
13th 1 109473 10.28 909.98 2.00 2.00 2.00
14th 1 1535 2.01 3.74 2.00 2.00 2.00
15th 2 2 2.00 0.00 2.00 2.00 2.00
16th 1 45 2.00 0.11 2.00 2.00 2.00
17th 1 489 2.00 1.49 2.00 2.00 2.00
18th 1 699433 6.19 1265.43 2.00 2.00 2.00
19th 2 2 2.00 0.00 2.00 2.00 2.00
20th 1 1061 2.02 4.12 2.00 2.00 2.00
21st 1 41 1.99 0.20 2.00 2.00 2.00
22nd 1 2 2.00 0.00 2.00 2.00 2.00
23rd 1 13755 2.16 38.90 2.00 2.00 2.00
24th 1 1000 2.28 16.07 2.00 2.00 2.00

Source – the authors

45

Table 7 – Sizes of preference lists using simple index for random sample of 1500 elements

Sizes of preference lists

Test case min. max. µ σ Q1 Q2 Q3

1st 1 2 1.48 0.50 1 1 2
2nd 1 2 1.95 0.22 2 2 2
3rd 1 2 1.98 0.14 2 2 2
4th 1 2 1.90 0.30 2 2 2
5th 1 41 1.69 1.12 1 2 2
6th 1 2 1.54 0.50 1 2 2
7th 1 4 1.35 0.48 1 1 2
8th 1 3 1.34 0.48 1 1 2
9th 1 2 1.39 0.49 1 1 2
10th 2 2 2.00 0.00 2 2 2
11th 2 2 2.00 0.00 2 2 2
12th 2 2 2.00 0.00 2 2 2
13th 1 2 2.00 0.02 2 2 2
14th 2 2 2.00 0.00 2 2 2
15th 2 2 2.00 0.00 2 2 2
16th 2 2 2.00 0.00 2 2 2
17th 2 2 2.00 0.00 2 2 2
18th 2 2 2.00 0.00 2 2 2
19th 2 2 2.00 0.00 2 2 2
20th 2 2 2.00 0.00 2 2 2
21st 2 2 2.00 0.00 2 2 2
22nd 2 2 2.00 0.00 2 2 2
23rd 2 2 2.00 0.00 2 2 2
24th 2 2 2.00 0.00 2 2 2

Source – the authors

46

Table 8 – Sizes of preference lists using suffix array for random sample of 1500 elements

Sizes of preference lists

Test case min. max. µ σ Q1 Q2 Q3

1st 1 2 1.48 0.50 1 1 2
2nd 1 2 1.95 0.22 2 2 2
3rd 1 2 1.98 0.14 2 2 2
4th 1 2 1.90 0.30 2 2 2
5th 1 81 1.71 2.10 1 2 2
6th 1 2 1.52 0.50 1 2 2
7th 1 4 1.35 0.48 1 1 2
8th 1 3 1.34 0.48 1 1 2
9th 1 2 1.39 0.49 1 1 2
10th 2 2 2.00 0.00 2 2 2
11th 2 2 2.00 0.00 2 2 2
12th 1 2 2.00 0.02 2 2 2
13th 1 10 2.02 0.36 2 2 2
14th 2 2 2.00 0.00 2 2 2
15th 2 2 2.00 0.00 2 2 2
16th 2 2 2.00 0.00 2 2 2
17th 2 2 2.00 0.00 2 2 2
18th 1 2 1.99 0.08 2 2 2
19th 2 2 2.00 0.00 2 2 2
20th 2 2 2.00 0.00 2 2 2
21st 1 2 1.99 0.09 2 2 2
22nd 2 2 2.00 0.00 2 2 2
23rd 1 24 2.00 0.41 2 2 2
24th 1 2 2.00 0.02 2 2 2

Source – the authors

47

Table 9 – Sizes of preference lists using q-gram index for random sample of 1500 elements

Sizes of preference lists

Test case min. max. µ σ Q1 Q2 Q3

1st 0 118 20.09 21.86 3.0 11.0 31.00
2nd 0 1088 400.66 518.17 0.0 4.0 1086.00
3rd 0 1144 442.56 550.69 0.0 2.0 1143.00
4th 0 296 19.81 25.98 4.0 11.0 27.00
5th 0 93 5.04 10.21 0.0 1.0 4.00
6th 0 281 25.61 38.57 1.0 5.0 38.00
7th 0 293 45.36 41.69 11.0 32.0 72.00
8th 0 207 52.90 49.10 11.0 32.0 91.25
9th 0 69 7.13 10.34 1.0 3.0 8.00
10th 0 862 35.01 69.86 0.0 0.0 56.00
11th 0 69 1.98 6.26 0.0 0.0 1.00
12th 0 89 6.04 15.16 0.0 0.0 3.25
13th 0 314 48.98 98.21 0.0 0.0 24.00
14th 0 172 11.28 30.69 0.0 1.0 6.00
15th 0 76 5.87 11.59 0.0 0.5 6.00
16th 0 96 1.78 9.16 0.0 0.0 0.00
17th 0 70 3.78 6.56 0.0 2.0 4.00
18th 0 176 22.74 41.76 0.0 2.0 20.00
19th 0 212 37.01 59.10 0.0 5.0 34.00
20th 0 178 9.91 20.31 0.0 0.0 11.00
21st 0 205 3.57 14.39 0.0 0.0 0.00
22nd 0 54 1.68 7.54 0.0 0.0 1.00
23rd 0 32 0.90 3.60 0.0 0.0 0.00
24th 0 315 7.61 15.23 0.0 1.0 8.00

Source – the authors

49

ANNEX A – SAMPLE ENTRIES FROM TEST CASE 11

The entries below were taken from lines 10839 to 10859 of test case 111.

"CAVU/fp/vum_sht[489][34]": "tendry/tendry_2/cuj0_61/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[481][55]": "tendry/tendry_23/cuj0_60/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[16][37]": "tendry/tendry_5/cuj0_2/H0/H0/Y_DS0",
"CAVU/fp/vum_sht[487][53]": "tendry/tendry_21/cuj1_60/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[14][56]": "tendry/tendry_24/cuj1_1/H0/H1/Y_DS0",
"CAVU/fp/vum_sht[327][41]": "tendry/tendry_9/cuj1_40/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[247][10]": "vaadim/tendry_10/cuj1_30/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[89][29]": "vaadim/tendry_29/cuj0_11/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[351][1]": "vaadim/tendry_1/cuj1_43/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[147][2]": "vaadim/tendry_2/cuj1_18/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[87][48]": "tendry/tendry_16/cuj1_10/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[329][62]": "tendry/tendry_30/cuj0_41/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[272][40]": "tendry/tendry_8/cuj0_34/H0/H0/Y_DS0",
"CAVU/fp/vum_sht[11][12]": "vaadim/tendry_12/cuj1_1/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[356][40]": "tendry/tendry_8/cuj0_44/H0/H1/Y_DS0",
"CAVU/fp/vum_sht[47][17]": "vaadim/tendry_17/cuj1_5/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[45][36]": "tendry/tendry_4/cuj0_5/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[109][6]": "vaadim/tendry_6/cuj0_13/H1/H1/Y_DS0",
"CAVU/fp/vum_sht[313][5]": "vaadim/tendry_5/cuj0_39/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[43][55]": "tendry/tendry_23/cuj1_5/H1/H0/Y_DS0",
"CAVU/fp/vum_sht[337][50]": "tendry/tendry_18/cuj0_42/H1/H0/Y_DS0",

1 In this work, test cases are indexed from 1.

	Title page
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	Introduction
	Literature review
	String distance
	Edit distance
	q-gram distance

	Filters
	Suffix array
	q-gram index

	Matching

	Proposed algorithms
	Left Greedy Matcher
	Cheating matcher
	Simple index

	Methodology
	Results
	Suffix array
	q-gram index
	Left Greedy Matcher

	Constraints and conclusions
	References
	Sizes of preference lists
	Sample entries from test case 11

