

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL - UFFS CAMPUS LARANJEIRAS DO SUL CURSO DE AGRONOMIA COM ÊNFASE EM AGROECOLOGIA

ANA PAULA SAMPIETRO

COMPORTAMENTO AGRONÔMICO DE DOIS GENÓTIPOS DE MORANGUEIRO SUBMETIDOS A DIFERENTES FORMAS DE CULTIVO

LARANJEIRAS DO SUL

ANA PAULA SAMPIETRO

COMPORTAMENTO AGRONÔMICO DE DOIS GENÓTIPOS DE MORANGUEIRO SUBMETIDOS A DIFERENTES FORMAS DE CULTIVO

Trabalho de conclusão de curso de graduação, apresentado ao curso de Agronomia com ênfase em Agroecologia da Universidade Federal da Fronteira Sul, como requisito para obtenção do título de Bacharel em Agronomia.

Orientadora: Profa. Dra. Cláudia Simone Madruga Lima

LARANJEIRAS DO SUL

2021

Bibliotecas da Universidade Federal da Fronteira Sul - UFFS

Sampietro, Ana Paula

Comportamento agronômico de dois genótipos de morangueiro submetidos a diferentes formas de cultivo / Ana Paula Sampietro. -- 2021.

42 f.:il.

Orientadora: Professora Doutora Cláudia Simone Madruga Lima

Trabalho de Conclusão de Curso (Graduação) -Universidade Federal da Fronteira Sul, Curso de Bacharelado em Agronomia, Laranjeiras do Sul, PR, 2021.

1. Cultivo do morangueiro. I. Lima, Cláudia Simone Madruga, orient. II. Universidade Federal da Fronteira Sul. III. Título.

Elaborada pelo sistema de Geração Automática de Ficha de Identificação da Obra pela UFFS com os dados fornecidos pelo(a) autor(a).

ANA PAULA SAMPIETRO

COMPORTAMENTO AGRONÔMICO DE DOIS GENÓTIPOS DE MORANGUEIRO SUBMETIDOS A DIFERENTES FORMAS DE CULTIVO

Trabalho de conclusão de curso de graduação, apresentado ao curso de Agronomia com ênfase em Agroecologia da Universidade Federal da Fronteira Sul, como requisito para obtenção do título de Bacharel em Agronomia.

Este trabalho foi defendido e aprovado pela banca em 17/05/2021

BANCA EXAMINADORA

Profa. Dra Claudia Simone Madruga Lima- UFFS
Presidente da Banca

Enga. Agra. Dra. Ana Paula Fernandes de Lima - Bioagro
Avaliadora - Membro da Banca

Profa. Dra. Vanessa Neumann Silva - UFFS Avaliadora - Membro da Banca

AGRADECIMENTOS

Dedico este trabalho primeiramente a minha família, que não mediram esforços para que eu pudesse chegar até aqui. Minha querida mãe Marilda Natalina Somariva Sampietro, meu querido pai Antonio Carlos Sampietro. Também ao meu irmão Pedro Luiz Sampietro, pelo apoio, ajuda e parceria nessa jornada. E também aos meus avós que sempre me apoiaram durante a minha caminhada.

Ao meu parceiro Luiz Fernando de Jesus Oliveira, pelo carinho prestado, me acompanhando e auxiliando durante todas as etapas desta caminhada.

Aos amigos que construí, estudantes, professores, técnicos e terceirizados, em especial ao seu Wilson, e a todos que de alguma maneira contribuíram na execução deste trabalho.

A Universidade Federal da Fronteira Sul, pela concessão da bolsa pelo edital Nº 368/GR/UFFS/2020 e recursos, que permitiram a execução do trabalho e ao grupo de Horticultura da UFFS, pelo auxílio prestado na execução deste trabalho.

Aos técnicos Diogo José Siqueira e Silvana da Costa, pelo suporte e auxílio neste trabalho.

Aos membros da banca examinadora, por aceitarem o convite e pelas contribuições neste trabalho e no curso.

Por fim, a minha querida orientadora professora Cláudia Simone Madruga Lima por se dispor a auxiliar na construção deste trabalho, sem poupar esforços e conhecimentos, a você o meu carinho e admiração.

Forma de publicação

Este Trabalho de Conclusão de Curso foi redigido em forma de artigo de acordo com as normas da "Revista Trópica", periódico de divulgação científica do Centro de Ciências Agrárias e Ambientais (CCAA), Unidade Acadêmica da Universidade Federal do Maranhão.

As normas da revista que foi utilizada podem ser consultadas no site da revista pelo link: http://www.periodicoseletronicos.ufma.br/index.php/ccaatropica/about/editorialPolicies#cust om-0

LISTA DE TABELAS

Tabela 1. Duração dos estádios fenológicos (dias), a partir da datas de transplantio ao início da
floração (T-IF) e transplantio ao início da colheita (T-IC) de dois genótipos (CREA FRF LAM
269.19 de dias curtos e CREA FRF 114.01 de dias neutros) de morangueiro para às condições
edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21)
Tabela 2. Clorofila total (IFC), número de folhas e de coroas de dois genótipos (CREA FRF
LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros) de morangueiro para as
condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21)20
Tabela 3. Diâmetro de plantas (mm) de morangueiro em função de dois genótipos (CREA FRF
LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros) e quatro formas de cultivo
(slab, calha, vaso e canteiro) para às condições edafoclimáticas de Laranjeiras do Sul-PR
(UFFS, 2020-21)23
Tabela 4. Sólidos solúveis (°Brix), diâmetro (mm) e massa unitária (g) de frutas do genótipo de morangueiro CREA FRF LAM 269.19 de dias curtos em função dos quatro meses de avaliação (setembro-set, outubro-out, novembro-nov e dezembro-dez) e quatro formas cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) Laranjeiras do Sul-PR (UFFS, 2020)
Tabela 5. Sólidos solúveis (°Brix), comprimento de frutas (mm) e massa unitária (g) de frutas
do genótipo CREA FRF 114.01 de dias neutros de morangueiro em função dos quatro meses
de avaliação (setembro-set, outubro-out, novembro-nov e dezembro-dez) e quatro formas
cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) Laranjeiras do Sul-PR (UFFS, 2020)26
Tabela 6. Comprimento de frutas (mm) do genótipo CREA FRF LAM 269.19 de dias curtos
nos meses de avaliação de setembro a dezembro em quatro diferentes sistemas de cultivo (Slab-
SL, Calha-CL, Vaso-V, Canteiro-CA) para às condições edafoclimáticas de Laranjeiras do Sul-
PR (UFFS, 2020)
Tabela 7. Diâmetro de frutas (mm) de do genótipo CREA FRF 114.01 de dias neutros nos meses de avaliação de setembro a dezembro em quatro diferentes sistemas de cultivo (Slab-SL, Calha-CL,Vaso-V, Canteiro-CA) para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020)
Tabela 8. Produção total (g.planta $^{-1}$), N° de Frutas, Frutas pequenas (g.planta $^{-1}$), Produção
Comercial (g.planta ⁻¹), Produtividade (t.ha ⁻¹) de dois genótipos (CREA FRF LAM 269.19 de

dias curtos - DC e CREA FRF 114.01 de dias neutros - DN) de morangueiro em quatro	
diferentes sistemas de cultivo no período de junho de 2020 a janeiro de 2021 para às condições	
edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21)	

LISTA DE FIGURAS

Figura 1-	· Valores	médios d	le pre	ecipitação	(mm), temp	perat	uras (°C) m	inima, média	e má	ixima
do ar nos	meses d	le avaliaçã	ão de	junho a c	lezembro de	202	20 e jane	iro	de 2021, Lara	ınjeir	as do
Sul-PR.	Dados	obtidos	na	estação	climática	da	UFFS	-	Laranjeiras	do	Sul
PR											15

LISTA DE QUADROS

Quadro	1:	Composição	química	do	solo	na	área	destinada	ao	experimento	no	Setor	de
Horticul	tura	a da Área Exp	erimental	da l	UFFS			• • • • • • • • • • • • • • • • • • • •					17

SUMÁRIO

1	INTRODUÇAO	12
2	MATERIAL E MÉTODOS	14
3	RESULTADOS E DISCUSSÃO	19
4	CONCLUSÕES	33
5	AGRADECIMENTOS	33
6	REFERÊNCIAS	34
7	ANEXOS	40
7.1	ANEXO 1	40
7.2	ANEXO 2	41

Comportamento agronômico de dois genótipos de morangueiro submetidos a diferentes formas de cultivo

Ana Paula Sampietro¹, Luiz Fernando de Jesus Oliveira e Cláudia Simone Madruga Lima

Resumo

O objetivo neste trabalho foi avaliar o desempenho agronômico de dois genótipos de morangueiro submetidos a diferentes formas de cultivo em sistema orgânico de produção. Os genótipos utilizados foram CREA FRF LAM 269.19 (dia curto) e CREA FRF 114.01(dia neutro). Os materiais foram cultivados em solo, calhas, slabs e vasos. O delineamento experimental foi com arranjo completamente casualizado em sistema bifatorial. As avaliações foram: datas de início de floração, frutificação e colheita, aspectos da planta, aspectos da fruta, e produtivos:

produção total; número de frutas, produção comercial; produção de frutas pequenas e; produtividade total. Os

dados foram comparados pelo teste de Scott-Knott. O genótipo de dia neutro apresentou precocidade de colheita

e maior desenvolvimento vegetativo. O cultivo em calha e canteiros proporcionaram maior produção e qualidade

de frutas em ambos os genótipos. Nos canteiros, as frutas produzidas apresentaram maior teor de sólidos solúveis

em ambos os genótipos. Conclui-se que o genótipo de dias neutros associado ao cultivo em canteiros proporcionou

o maior desempenho agronômico em sistema de cultivo orgânico.

Palavras-chave: slab, vasos, calha, solo, morango, Fragaria x ananassa.

Agronomic behaviour of two strawberry genotypes subjected to different cultivation methods

Abstract

The objective of this work was to evaluate the agronomic performance of two strawberry genotypes submitted to different forms of cultivation in an organic production system. The genotypes used were CREA FRF LAM 269.19 (short-day) and CREA FRF 114.01(neutral-day). The materials were grown in soil, troughs, slabs and pots. The experimental design was completely randomized in a bifatorial system. The evaluations were: dates of beginning of flowering, fructification and harvest, aspects of the plant, aspects of the fruit, and productive: total production; number of fruits, commercial production; production of small fruits and; total productivity. The data were compared by the Scott-Knott test. The neutral-day genotype showed early harvesting and greater vegetative development. Trough and bed cultivation provided higher fruit yield and quality in both genotypes. In the beds, the fruits produced presented higher soluble solids content in both genotypes. It is concluded that the neutral-day genotype associated with the cultivation in beds provided the best agronomic performance in an organic

cultivation system.

Key-words: slab, pots, trough, soil, *strawberry*, *Fragaria x ananassa*.

¹Universidade Federal da Fronteira Sul, Laranjeiras do Sul/PR.

ana21sampietro2017@gmail.com, luiz007oliveira@gmail.com, claudia.lima@uffs.edu.br.

INTRODUÇÃO

O cultivo do morangueiro (*Fragaria x ananassa* Duch.) vem crescendo devido às características nutricionais e sensoriais das frutas. E ainda, a possibilidade de ampla utilização, tanto na produção de diversos alimentos, quanto no consumo da fruta *in natura* (Antunes et al., 2020). No Brasil, a maior parte da produção se dá em pequenas e médias propriedades, apresentando-se assim, uma cultura de elevada importância socioeconômica no país (Agrianual, 2020).

O morangueiro é dotado de diferentes cultivares que dependem de condições especiais para o seu desenvolvimento. Dentre estes fatores, estão a temperatura e o fotoperíodo, que exercem influência direta sobre as cultivares de dias curtos (Strassburger et al., 2010). Já as cultivares de dias neutros não apresentam sensibilidade ao fotoperíodo. Esses materiais respondem a variações de temperatura, sendo que a diferenciação floral ocorre a temperaturas abaixo de 28°C, podendo estender o período de produção durante todo o ano, desde que essas condições sejam satisfeitas (Otto et al., 2009).

A maioria das cultivares de morangueiro utilizadas no Brasil atualmente são estrangeiras, norte-americanas ou européias. Essas cultivares passam por inúmeras avaliações para que o registro nacional para cultivo no Brasil seja expedido. No entanto, esses dados muitas vezes permanecem sob domínio das empresas realizadoras. Desta forma, a verificação do desempenho nas condições ambientais nacionais é fundamental para o lançamento e indicação de cultivares (Becker et al., 2016).

Tradicionalmente o morangueiro é cultivado diretamente no solo. Nessa forma de cultivo, o plantio é realizado em canteiros com cobertura vegetal morta ou plásticos (mulching) e protegidos por túneis baixos. A cobertura do solo é de extrema importância, e tem por finalidade, otimizar o uso da água e fertilizantes, evitando a competição por plantas espontâneas e o contato das frutas direto com o solo (Radin et al., 2011). Assim, como o uso de túneis baixos, que favorecem o crescimento e desenvolvimento das plantas, formando um microclima diferenciado e protegendo o cultivo das intempéries climáticas (Carvalho et al., 2012a).

O cultivo no solo apresenta menor custo de implantação, quando comparado ao cultivo fora de solo, além de não requerer rotinas tão intensas de manejo (Dal'Sotto, 2013). Contudo, causa dificuldades ergonômicas, aumentando a penosidade no trabalho, o que dificulta contratação de trabalhadores, além disso, as plantas são mais suscetíveis a doenças, principalmente, as radiculares (Godoi et al., 2009).

Como alternativa para contornar esses problemas há o cultivo fora do solo. Esse pode ser em hidroponia ou em substrato também conhecido como semi-hidropônico, sendo que esse último vem ganhando destaque, pois nesta forma os recipientes são preenchidos com substrato, material inerte ou pouco ativo quimicamente como areia lavada, cascalho e argila expandida, que servem para dar sustentação às plantas (Trevisan et al., 2017). Neste sistema os recipientes de cultivo ficam alojados em estruturas suspensas, o que proporciona melhor conforto para a realização dos trabalhos (Gonçalves et al., 2016a). Entre os diferentes recipientes que podem ser utilizados neste tipo de cultivo estão os sacos de cultivo (slabs), as calhas ou os vasos (Sausen et al., 2020).

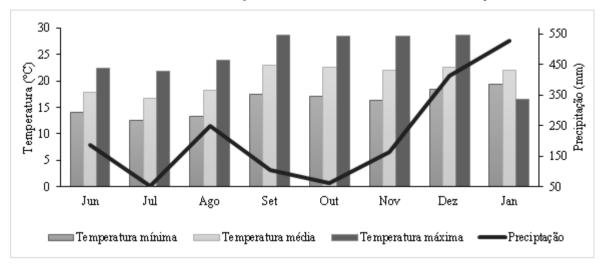
Entre as formas de cultivo fora de solo a de saco de cultivo (slabs) é a mais conhecida e difundida. Essa forma proporciona maior controle da fertilidade, redução da incidência de doenças, praticidade no manejo e permite uso de áreas antes inviáveis ao cultivo, além de possibilitar o adensamento das plantas por ser acondicionado em estruturas suspensas (Franco et al., 2017a). Entretanto, apresenta a desvantagem do tempo de duração dos slabs plásticos, que recomenda-se que seja realizada substituição a cada dois anos, por serem facilmente danificados, devido a contaminação por patógenos e a compactação do substrato (Gonçalves et al., 2017).

Nos últimos anos, o cultivo do morangueiro em calhas vem ganhando destaque devido ao menor custo de implantação quando comparado aos sacos de cultivo, pois permite a construção das calhas pelos próprios agricultores com materiais encontrados em sua propriedade que favorecem a instalação e manejo na implantação do sistema. E ainda, permite a reutilização por um longo período de tempo, desde que tomadas as medidas sanitárias adequadas (Gonçalves et al., 2016b).

O uso de vasos é outra forma de cultivo de morangueiro fora do solo que vem se ampliando. Neste sistema, a condução e o manejo das plantas é facilitado, o desenvolvimento radicular ocorre com facilidade devido ao espaço para crescimento e ainda, proporciona menor dependência de irrigação. Outra vantagem é a possibilidade de utilizar uma área sem precisar de rotação, apenas substituição do substrato, reduzindo a incidência de pragas e doenças, facilitando um desenvolvimento sadio principalmente da parte radicular (Charlo et al., 2009). O cultivo de morangueiro de forma convencional caracteriza-se pela grande quantidade de agrotóxicos aplicados durante o ciclo produtivo (Pilla & Gimenez, 2017). Em contrapartida, a produção orgânica vem como uma alternativa ao atual modelo utilizado, buscando sistemas eficientes no uso de energia e conservando o ambiente. Além disso, apresenta potencial

competitivo, quando comparado ao sistema convencional, pois é iminente a redução de custos com a aquisição de insumos externos (Donadelli et al., 2012).

No sistema de produção fora de solo, emprega-se uma adaptação ao modelo convencional, ou seja, com utilização de adubos minerais e agrotóxicos. Já no sistema orgânico são utilizados compostos orgânicos para preenchimento dos recipientes de cultivo (Pivoto & Martelleto, 2014). A nutrição das plantas é realizada por meio da fertirrigação utilizando biofertilizantes (Pivoto et al., 2015). Apesar da diversidade de opções de insumos alternativos, as pesquisas com formas de cultivo do morangueiro fora de solo, ainda são escassas para o cultivo orgânico. Com o crescimento do cultivo do morangueiro no Brasil e no mundo, têm-se motivado estudos de novas técnicas e cultivares, tornando-se necessário analisar a adaptabilidade desses novos materiais nas regiões em que deseja-se introduzi-los (Antunes & Peres, 2013), além do potencial produtivo e a qualidade físico-química das frutas produzidas (Pádua et al., 2015). Os estudos direcionam-se para a produção de morangueiro de forma orgânica, com viabilidade em aspectos técnicos e com retorno econômico, além de minimizar os impactos ambientais (Santi & Couto, 2013).


Desta maneira, o objetivo neste trabalho foi avaliar o desempenho agronômico de dois genótipos de morangueiro submetidos a diferentes formas de cultivo em sistema orgânico de produção.

MATERIAL E MÉTODOS

O experimento foi realizado na área experimental da Universidade Federal da Fronteira Sul, *campus* Laranjeiras do Sul-PR, no setor de Horticultura, localização 25°24'28'' S 52°24', 58' W e altitude de 840 m. O solo da região é classificado como um LATOSSOLO VERMELHO Eutróférrico (Embrapa, 2013).

O clima da região é classificado como (Cfb), clima temperado segundo a classificação de Köeppen-Geiger (1948), com temperatura média anual entre 18 e 19°C e precipitação de 1800 a 2000 mm.ano⁻¹ (Calviglione et al., 2000). Durante o período de execução do experimento, que foi de junho de 2020 a janeiro de 2021, as médias de temperaturas mínimas e máximas permaneceram entre 11,7 e 28,6°C, respectivamente, e a precipitação acumulada foi de 1759,9 mm (Figura 1) (UFFS, 2020).

Figura 1. Valores médios de precipitação (mm), temperaturas (°C) mínima, média e máxima do ar nos meses de avaliação de junho a dezembro de 2020 e janeiro de 2021, Laranjeiras do Sul-PR. Dados obtidos na estação climática da UFFS - Laranjeiras do Sul-PR.

Como material vegetal foram utilizados dois genótipos de morangueiro oriundos da Itália, provenientes do programa de melhoramento do Consiglio per La Ricerca in Agricoltura e l'Analisi dell'Economia Agraria – Unitá di Ricerca per La Frutticoltura di Forlì (CREA-FRF). Estes materiais foram enviados para o Brasil através de uma parceria com o Centro de Ciências Agroveterinárias (CAV) da Universidade do Estado de Santa Catarina (UDESC). Sendo identificados como CREA FRF LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros.

Os genótipos foram cedidos à Universidade Federal da Fronteira Sul para realização de experimentos nas condições edafoclimáticas de Laranjeiras do Sul/PR. Os materiais foram cultivados em sistema orgânico de produção e foram avaliados quatro diferentes formas de cultivo, sendo estes: em calhas, sacos de cultivo (slabs), solo e vasos todos em ambiente protegido.

Quanto ao delineamento experimental foi realizado de duas maneiras diferentes, sendo que para os aspectos de qualidade de frutas a época de colheita exerce influência nas características das mesmas, por isso optou-se em realizá-las de maneira diferente, sendo empregado em arranjo inteiramente casualizado em esquema bifatorial 4 x 4, sendo as quatro formas de cultivo e quatro meses de colheita (setembro, outubro, novembro e dezembro), utilizando três repetições com 5 frutas cada.

Para as demais variáveis, utilizou-se delineamento completamente casualizado em esquema bifatorial, 2 x 4 (dois genótipos e quatro formas de cultivo). Foram utilizadas três repetições com cinco plantas cada, totalizando 120 plantas no experimento, mais bordaduras, que foram

consideradas duas plantas.

O ambiente protegido utilizado para formas de cultivo em calha, slab e vaso foi uma estrutura tipo túnel alto com 2,5 m de altura, 5,0 m de largura e 30,0 m de comprimento. Para o cultivo em solo, utilizou-se canteiros cobertos com filme plástico (mulching) dupla face. Posteriormente, realizou-se a construção dos túneis baixos, utilizando filme plástico em polietileno de baixa densidade (PEBD) de coloração leitosa, com espessura de 100 micras, arcos de aço galvanizado revestidos com tubos de PVC, com altura de 0,75 m dos canteiros e espaçados a 2,00 m.

Nos cultivos fora de solo, o substrato utilizado foi formulado considerando os materiais que o agricultor possa dispor na propriedade. Assim a mistura foi composta por 25% de composto orgânico, 29% terra para vaso, 35% de substrato comercial Turfa Fertil, composto de turfa e casca de arroz desidratada, 22,5% de húmus, 12,5% vermiculita e 1% de turfa, que foi adaptado levando em consideração o indicado por Mazon (2019).

Os sacos de cultivo (slabs) utilizados foram de plástico e medem 1,20 m de comprimento, 0,30 m de largura e 0,30 m de altura. Foram preenchidos com 33,6 L de substrato, em cada e ficaram alocados horizontalmente em bancadas a 1,00m do solo. As calhas foram construídas, com madeira proveniente de reflorestamento não tratada. As dimensões das calhas foram 2,40 m de comprimento, 0,30 m de largura e 0,20 m de altura, posicionadas a um metro do solo no ponto mais alto e com 2% de declividade para permitir o escoamento da água em excesso, cada calha foi forrada com filme plástico dupla face e preenchida com 144 L de substrato. Os slabs e as calhas estavam alocadas a 0,40 m um do outro.

Os vasos utilizados foram de plástico com coloração preta e capacidade de cinco litros, apresentando altura e diâmetro de 0,20 m. Optou-se pelo uso de vasos com capacidade de cinco litros, pois de acordo com Lopes et al (2019), não há necessidade de volumes maiores que esse para o bom desenvolvimento da cultura. Os mesmos foram acondicionados sobre *palets* de madeira, e preenchidos com substrato.

O cultivo em solo iniciou-se com o preparo dos canteiros, realizando gradagem, encanteiramento, adubação e correção do solo, tendo como base a análise de solo realizada na área em anos anteriores (Quadro 1) e o Manual de Adubação e Calagem para o Estado do Paraná (2017). Os canteiros apresentavam as seguintes dimensões: 6,00 m de comprimento, 1,00 m de largura e 0,30 m de altura. A calagem foi realizada cerca de 30 dias antes do plantio utilizando 2780 kg.ha⁻¹ de calcário calcítico com PRNT de 80%. No mesmo período, foi realizada a adubação necessária, sendo adicionados 100 kg.ha⁻¹ de fosfato natural, 4550 kg.ha⁻¹ de cama de aviário peletizada e 50 kg.ha⁻¹ de cloreto de potássio.

Quadro 1. Composição química do solo na área destinada ao experimento no Setor de Horticultura da Área Experimental da UFFS.

pH CaCl ₂	MO g/dm ³	P Melichi-1 Mg/dm ³	K	Ca	Mg	Al	H+Al	CTC pH7	V%	Ca/M g	Ca/K	Mg/K
5,41	40,53	23,91	0,34	3,62	1,66	0,0	5,68	11,30	60,7	2,2/1	10,6/1	4,9/1

O plantio das mudas foi realizado dia 19 de junho de 2020. Sendo que antes do plantio as mudas foram caracterizadas quanto ao diâmetro e número de folhas. Os valores médios de diâmetro obtidos foram 7,18 mm para os genótipos de dia curto e 9,47 mm, para os materiais dia neutro. O tamanho mínimo indicado pela legislação brasileira para o diâmetro da coroa é de 5 mm (Brasil, 2012). Desta maneira, as mudas encontram-se dentro dos padrões recomendados. O número médio de folhas foi 1,70 e 1,50 folhas, para os genótipos de dia curto e dia neutro, respectivamente. Posteriormente, aplicou-se calda de alho nas mudas, que vieram em torrão e foram imediatamente transplantadas.

O espaçamento utilizado foi de 0,20m entre plantas nos sistemas slab, calha e 0,40m x 0,40m entre plantas e linhas, nos canteiros e os vasos abrigavam uma única planta cada, sendo alocados a 0,10m um do outro.

A irrigação foi realizada por gotejamento com frequência de três vezes distribuída ao longo do dia. A adubação, tanto no solo quanto nos cultivos em substrato, foi realizada a partir de fertirrigação utilizando fontes orgânicas, sendo utilizado fertilizante Super Magro, formulado de acordo com o proposto por Leite e Meira (2012), urina de vaca, cinza vegetal, entre outros. Para o cultivo fora de solo a frequência das adubações foi definida a partir das aferições constantes da condutividade elétrica no experimento, sendo que na fase vegetativa a solução drenada foi mantida entre 1,1 a 1,2 dS.cm⁻¹, para acelerar o desenvolvimento vegetativo e o engrossamento da coroa (Antunes et al., 2016). Quando a planta estava na fase reprodutiva a condutividade elétrica permaneceu entre 1,5 e 1,8 dS.cm⁻¹. Portanto, cabe ressaltar a necessidade de implementação de um equipamento mais adequado para a adubação em sistema orgânico, visto que, foram observadas dificuldades para determinação das adubações utilizando o condutivímetro comum.

Normalmente, a adubação foi realizada três vezes por semana, variando principalmente, conforme as condições do clima. Nas formas de cultivo fora de solo o sistema adotado para o cultivo era aberto, ou seja, a solução nutritiva lixiviada era liberada diretamente no solo. Este

sistema representa a maioria dos cultivos comerciais de morangueiro e praticamente a totalidade da produção das demais hortaliças de fruto (Palombini et al., 2019).

As flores iniciais foram retiradas nos primeiros 15 dias após o plantio para garantir o desenvolvimento estrutural adequado das mudas. As demais práticas de manejo foram realizadas de acordo com a legislação de orgânicos (BRASIL, 2011), conforme as necessidades das plantas e o controle de insetos-pragas e doenças.

As avaliações realizadas foram: datas de início de floração, frutificação e colheita, aspectos da planta e produtivos.

Quanto aos parâmetros fenológicos foram baseados na metodologia de Antunes et al. (2006), os quais consideram início da floração quando 50% das plantas apresentaram pelo menos uma flor aberta. A partir do início da floração determinou-se a data de início dos seguintes parâmetros: transplantio ao início da floração (T-F), início da floração ao início da colheita (IF-IC) e do transplantio ao início da colheita (T-IC). Para as avaliações de início de colheita consideram-se maduras as frutas que apresentaram 75% da epiderme com coloração vermelha. Os parâmetros das plantas avaliados quinzenalmente foram: número de folhas e coroas, diâmetro da planta, considerando todas as coroas, medidas na base da planta, sendo verificado com paquímetro digital (mm) e teor de clorofila total, determinado de forma não destrutiva utilizando o clorofilômetro Falker Clorofilog modelo CFL 1030, em que o resultado é expresso em ICF (índice de clorofila Falker), sendo realizadas duas leituras por planta.

As frutas colhidas foram avaliadas mensalmente nos meses de setembro, outubro, novembro e dezembro de 2020. As avaliações realizadas foram: diâmetro, sólidos solúveis, comprimento das frutas e massa unitária. A massa unitária (g) foi avaliada com o auxílio de balança digital semi analítica. As medidas de diâmetro e comprimento de frutas foram obtidas com o uso de paquímetro digital e os resultados expressos em milímetros. Para a análise de sólidos solúveis retirou-se uma amostra de suco das frutas adicionando-o no refratômetro digital Hanna Hi96801 com compensação automática de temperatura, em que o resultado é expresso em graus (°)Brix.

Os aspectos produtivos verificados foram: número de frutas por planta e massa fresca (g) verificada em balança digital. Frutas pequenas, sendo consideradas as frutas que obtiveram massa menor que o valor mínimo de 6g (Pereira et al. 2013). A partir do número e massa das frutas foram quantificadas: produção total (g planta⁻¹); produtividade total, estimada por hectare (t ha⁻¹); produção comercial (g planta⁻¹) e produção de frutas pequenas (g planta⁻¹).

Os dados obtidos foram submetidos à análise de variância e as diferenças entre médias comparadas pelo teste de Scott-Knott a 5% de probabilidade. As avaliações ocorreram com o auxílio do programa Sisvar 5.6 (Ferreira, 2011).

RESULTADOS E DISCUSSÃO

Para avaliações fenológicas não houve interação entre os fatores (genótipos x formas de cultivo), sendo que somente o fator genótipo atuou de maneira significativa para as variáveis transplantio ao início da floração (T-IF) e transplantio ao início da colheita (T-IC) (Tabela 1). Tabela 1. Duração dos estádios fenológicos (dias), a partir da datas de transplantio ao início da floração (T-IF) e transplantio ao início da colheita (T-IC) de dois genótipos (CREA FRF LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros) de morangueiro para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21).

Genótipos	T - IF (dias)	T - IC (dias)
CREA FRF LAM 269.19	63,41 a	88,66 a
CREA FRF 114.01	52,08 b	79,66 b
CV(%)	19,28	11,55
Erro	3,21	2,80

Médias seguidas de letras iguais não diferem entre si pelo teste de Scott-Knott a 5% de significância.

Com relação às avaliações fenológicas, verificou-se que ambos os genótipos desenvolveram-se adequadamente e expressaram precocidade em relação à colheita na região de estudo. Assim, os materiais apresentam-se como uma adequada opção para os produtores, principalmente o genótipo CREA FRF 114.01, que atingiu uma produção satisfatória (Tabela 8).

Em pesquisa realizada em Laranjeiras do Sul/PR Moritz et al (2021), ao avaliarem uma cultivar de dia neutro (Albion) e quatro genótipos, sendo uma de dia neutro e três de dias curtos em cultivo no solo e nas mesmas condições climáticas do presente trabalho, constataram valores superiores aos obtidos nesta pesquisa. Os autores verificaram que para as cultivares de dias curtos entre o T – IF período foi de 88,16 dias e T - IC 118,02 dias. Para os materiais de dias neutros os períodos do T – IF foram de 92,76 dias e do T - IC, 111,15 dias.

A diferenciação floral em cultivares de morangueiro de dias curtos ocorre quando o fotoperíodo é inferior a 14 horas e a temperatura média encontra-se abaixo de 15°C (Strassburger et al., 2010). Fato este que pode explicar o atraso no início da floração, assim como para o início da colheita do genótipo de dia curto, considerando que nos meses iniciais a temperatura média foi

mais elevada (17 a 18°C) do que a requerida. E ainda, como o transplantio foi realizado no mês de junho, período em que segundo Pilla e Gimenez (2017), as plantas são estimuladas a florar, pode ter sido o fator que contribuiu para a antecipação da floração das cultivares de dias neutros. Além disso, as cultivares de dias neutros não respondem ao fotoperíodo, e as temperaturas estavam favoráveis ao início da floração (abaixo de 28°C) (Figura 1).

Para que o processo de floração e frutificação das plantas de morangueiro se iniciem, uma série de processos fisiológicos são desencadeados em sequência. Sendo completamente dependente de estímulos externos, como a temperatura, o fotoperíodo e fatores internos da planta, ou pelos três atuando em conjunto (Antunes et al., 2016). Porém esta sensibilidade varia de acordo com as cultivares e o ambiente, em que para cultivares de dia neutro, por exemplo, os fatores internos e a temperatura são mais relevantes do que o fotoperíodo (Bueno et al., 2002).

A colheita das frutas pode ser iniciada de 60 a 80 dias após o transplantio das mudas, sem a retirada das flores iniciais (Antunes et al., 2011). Desta maneira, pode-se inferir que as plantas neste experimento, estavam dentro do esperado para cultura mesmo com a retirada das flores iniciais. Esta prática de poda, consiste na remoção das flores iniciais pós transplantio, exercendo grande influência no desenvolvimento das plantas em fase inicial, favorecendo a concentração de fotoassimilados e nutrientes no desenvolvimento estrutural da planta, isto implicará na maior capacidade produtiva das plantas, visto que as flores são drenos que demandam de grande quantidade de energia.

Para as variáveis clorofila, número de folhas e coroas não houve interação, sendo que o fator genótipo atuou de forma isolada (Tabela 2).

Tabela 2. Clorofila total (IFC), número de folhas e de coroas de dois genótipos (CREA FRF LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros) de morangueiro para as condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21).

Canátinas	A	Aspectos da planta	
Genótipos	Clorofila total (ICF)	N° de folhas	N° de coroas
CREA FRF LAM 269.19	43,93 a	11,95 b	2,31 b
CREA FRF 114.01	41,75 b	13,78 a	2,62 a
CV (%)	3,83	37,32	24,71
Erro	0,21	0,62	0,07

Médias seguidas de letras iguais não diferem entre si pelo teste de Scott-Knott a 5% de significância.

Tendo em vista que o nitrogênio é um dos nutrientes mais demandados pela cultura do morangueiro, destaca-se a importância da medição do teor de clorofila. Visto que essa variável correlaciona-se de maneira positiva com o teor de nitrogênio nas folhas das plantas (Carvalho et al., 2012b). Além disso, a avaliação do teor de clorofila é uma alternativa para observar a capacidade fotossintética da planta. Desta maneira, nesta pesquisa o genótipo com maior índice de clorofila total foi de dia curto. Resultado semelhante foi verificado por Vignolo et al (2011), para a cultivar Camarosa (dia curto) ao avaliarem a produção de morangueiros cultivados em solo, a partir de fertilizantes alternativos em pré-plantio, em que a cultivar apresentou média de 44,3 para o teor de clorofila, com uma produção de 813,2 gramas por planta⁻¹.

A clorofila segundo Streit et al (2005), é caracterizada por um grupo de pigmentos presentes nos cloroplastos das folhas, que são responsáveis pela realização da fotossíntese. O genótipo de dia curto apresentou número de folhas reduzido o que pode ter proporcionado um incremento no teor de clorofila destas plantas, indicando uma maior eficiência em relação à atividade fotossintética. Pois de acordo com Trevisan et al (2017), o aumento no teor de clorofila, consequentemente resulta no aumento da produção energética, de certa forma, compensando a redução da área foliar das plantas do genótipo de dia curto.

Plantas com maior número de folhas e coroas foram verificadas nas cultivares de dia neutro. Segundo Rosa et al (2013), o número de folhas aumenta de maneira proporcional ao número de coroas, além disso, um maior número de folhas representa maior área foliar e consequentemente, a interceptação da radiação solar aumenta, impactando de maneira direta na produção e tamanho das frutas.

Franco et al (2017b), ao avaliarem diferentes posicionamentos de slab para cultivar dia neutro (San Andreas), durante sete meses (março a novembro), em sistema de cultivo convencional nas condições edafoclimáticas de Laranjeiras do Sul/PR, observaram um número médio de folhas superior (20,15) às verificadas em ambos os genótipos estudados. Já Alves (2015), avaliando quatro diferentes cultivares de dias neutros (Aromas, Albion, Monterey e Portola), durante oito meses, em diferentes densidades de plantio, na cidade de Pelotas/RS, observou médias semelhantes às obtidas neste estudo para número de coroas (3,47).

Para o diâmetro da planta houve interação entre os fatores (Tabela 3). O diâmetro da coroa, juntamente com as raízes primárias das mudas, tem a função de armazenar reservas e formar carboidratos, que são essenciais para o crescimento vegetativo das plantas (Antunes et al., 2016). No momento do transplantio as mudas de dias neutros obtiveram médias superiores no diâmetro da coroa (9,74 mm) em relação ao genótipo de dia curto (7,18 mm). Além disso, mudas com maiores diâmetros de coroa produzem mais frutos, pois os primórdios florais são

produzidos de maneira precoce, além de apresentarem capacidade de produzir um maior número de botões florais. Acredita-se que estes fatores podem ter contribuído para o maior crescimento das plantas ao longo do ciclo. Além disso, a precocidade no florescimento, também é influenciada pelo diâmetro da coroa (Cocco et al., 2015).

Lisboa et al (2017), estudando o desenvolvimento de cultivares de morangueiro em diferentes substratos, em cultivo fora de solo, em oito meses de avaliação, constataram que o diâmetro da planta nas cultivares de dias curtos (27,60 mm), foi superior em relação às cultivares de dias neutros (26,15 mm). Os valores obtidos pelos autores acima são superiores ao deste experimento somente para o genótipo de dias curtos cultivados em slab e vaso.

A superioridade no diâmetro da coroa no cultivo em canteiro, independente do genótipo, pode ser atribuída ao maior espaço disponível para o crescimento da planta como um todo. Richter et al (2017a), enfatizam que quando cultivado em solo as plantas de morangueiro apresentaram maior crescimento da parte aérea. Além disso, a restrição do crescimento radicular das plantas ocorre devido à limitação dos recipientes de cultivo, pois volumes maiores de substrato, possibilitam o crescimento das raízes e consequentemente, aumentando o aporte hídrico e nutricional, promovendo maior desenvolvimento vegetativo da planta e acúmulo de substâncias de reserva na coroa (SANTOS et al., 2012).

O menor desenvolvimento das plantas cultivadas em vaso pode ter sido devido a menor distribuição de água e solução nutritiva. Pois cada vaso contava com apenas um gotejo, diferente das demais formas de cultivo que a água tinha capacidade de espalhar-se pelo sistema de cultivo, sendo o sistema de irrigação indicado é do tipo "espaguete". Este desenvolvimento deficiente das plantas cultivadas em vaso impactou na produção das plantas que foram submetidas a este sistema, como é possível observar na tabela 8.

Tabela 3. Diâmetro de plantas (mm) de morangueiro em função de dois genótipos (CREA FRF LAM 269.19 de dias curtos e CREA FRF 114.01 de dias neutros) e quatro formas de cultivo (slab, calha, vaso e canteiro) para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21).

F 1 12	Genótipos						
Formas de cultivo	CREA FRF LAM 269.19	CREA FRF 114.01					
Slab	25,93 bB	33,38 aA					
Calha	32,36 aA	31,73 bB					
Vaso	25,47 bB	29,78 bA					
Canteiro	34,28 aA	35,69 aA					
CV (%)	17,7	7					
Erro	1,42	2					

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade; letras minúsculas na coluna; letras maiúsculas na linha.

Para as variáveis de qualidade de frutas, os genótipos foram avaliados separadamente. Para ambos os genótipos verificou-se que, quando analisados sólidos solúveis e massa unitária das frutas houve interação entre os fatores (formas de cultivo x meses de colheita) (Tabelas 4 e 5). Para o genótipo de dia curto também obteve-se interação quando avaliado o comprimento das frutas. Já para o genótipo de dia neutro, o diâmetro das frutas respondeu a interação dos fatores. Quando analisado o comprimento das frutas para genótipo de dia neutro e diâmetro das frutas do genótipo de dia curto somente o fator meses de colheita foi significativo (Tabela 6 e 7).

O teor de sólidos solúveis é uma característica de interesse no consumo de frutas, principalmente *in natura*, pois expressa o teor de açúcares e outros compostos, como ácidos, vitaminas, aminoácidos e algumas pectinas, porém em menores quantidades (Conti, et al., 2002). Antunes, et al (2010), destacam que para um sabor aceitável, as frutas de morango devem apresentar pelo menos 7,0°Brix.

Desta forma, as frutas do genótipo CREA FRF LAM 269.19 de dias curtos colhidas nos meses de outubro nas formas de cultivo slab, calha e vaso, assim como as frutas colhidas em dezembro nas formas de cultivo em calha e vaso não apresentaram teores satisfatórios de sólidos solúveis. Comportamento semelhante foi verificado para o genótipo CREA FRF 114.01 de dias neutros também no mês de outubro para as frutas colhidas em todas as formas de cultivo assim como no mês de dezembro para forma de cultivo em calha.

Acredita que estes resultados podem estar relacionados com as condições climáticas, pois o mês de outubro apresentou temperaturas elevadas, com máxima de 36°C, (Figura 1) temperatura acima do ideal para a cultura. Pois em altas temperaturas a transpiração e a respiração aumentam, ocasionando um alto gasto energético, provocando a translocação das reservas armazenadas nos frutos, em forma de açúcares, para manutenção das atividades essenciais da planta.

Já no mês de dezembro em que se obteve uma produção acentuada, levou a maior distribuição dos sólidos entre as frutas produzidas, estes fatores podem ter causado a redução no teor de sólidos solúveis nos respectivos meses de avaliação e genótipos. Além disso, as temperaturas também encontravam-se altas (máxima de 31°C), e a pluviosidade no mês de dezembro foi elevada (413 mm), (Figura 1) o que resultou em dias nublados com baixa incidência solar, resultando na deficiência da atividade fotossintética e distribuição de fotoassimilados entre as frutas.

O teor de sólidos solúveis pode variar conforme as condições climáticas, genéticas e nutricionais (Pinelli et al., 2011). Este último fator pode ter apresentado maior contribuição para a superioridade no teor de sólidos das frutas colhidas nas plantas cultivadas em canteiro/solo em todos os meses de colheita e para os dois genótipos estudados, considerando a complexidade da composição do solo em relação ao substrato.

Além disso, maiores temperaturas proporcionam a colheita de frutas com maior qualidade, devido a síntese de compostos secundários e pelo acúmulo de açúcares solúveis ser maior nestas condições (Resende et al., 2010). Estes resultados corroboram com os observados por Fernandes Júnior et al (2002), ao estudarem o comportamento agronômico do morangueiro cultivar Campinas IAC 2712 (dias curtos), nos sistemas hidropônico-NFT, em substrato de casca de arroz carbonizada acondicionada em colunas verticais e no solo.

Tabela 4. Sólidos solúveis (°Brix), diâmetro (mm) e massa unitária (g) de frutas do genótipo de morangueiro CREA FRF LAM 269.19 de dias curtos em função dos quatro meses de avaliação (setembro-set, outubro-out, novembro-nov e dezembro-dez) e quatro formas cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) Laranjeiras do Sul-PR (UFFS, 2020).

					CREA	A FRF LAM 2	69.19					
		Sólidos solú	iveis (°Brix)			Diâmet	ro (mm)		Massa unitária (g)			
Meses de colheita						Formas d	e cultivo					
	SL	CL	V	CA	SL	CL	V	CA	SL	CL	V	CA
set	7,44 bB	7,8 aB	7,46 bB	9,04 cA	41,85 aA	31,53 bB	35,93 aB	30,17 aB	21,59 aA	21,59 aA	19,57 aA	15,82 aB
out	5,68 cB	5,6 bB	5,31 cB	8,87 cA	27,75 bB	34,94 aA	29,90 bB	28,76 aB	11,63 bA	17,03 bA	14,51 bA	13,21 aA
nov	9,67 aB	8,54 aC	8,54 aB	11,10 aA	25,04 aB	26,52 bA	27,20 bA	28,24 aA	9,655 bB	9,95 cB	12,81 bA	15,09 aA
dez	7,82 bB	6,20 bC	6,25 cB	10,04 bA	24,01 bB	31,88 bA	27,46 bB	16,54 aA	9,15 bB	11,53 bA	9,74 bB	11,33 aB
CV (%)		7,	72		7,9				16,19			
Erro	0,34				1,32				1,21			

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade; letras minúsculas na coluna; letras maiúsculas na linha.

Tabela 5. Sólidos solúveis (°Brix), comprimento de frutas (mm) e massa unitária (g) de frutas do genótipo CREA FRF 114.01 de dias neutros de morangueiro em função dos quatro meses de avaliação (setembro-set, outubro-out, novembro-nov e dezembro-dez) e quatro formas cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) Laranjeiras do Sul-PR (UFFS, 2020).

	CREA FRF 114.01											
		Sólidos solú	íveis (°Brix)			Comprime	ento (mm)		Massa unitária (g)			
Meses de colheita	Formas de cultivo											
•	SL	CL	V	CA	SL	CL	V	CA	SL	CL	V	CA
set	7,00 bA	7,98 bA	7,73 bA	8,82 bA	34,33 aB	40,29 aA	37,3 aB	41,67 aA	12,87 aB	12,87 bB	12,24 aB	19,15 aA
out	6,11 bA	6,94 bA	5,69 cA	6,90 cA	30,64 aA	31,48 aA	32,31 bA	33,07 aB	12,23 aB	17,46 aA	14,99 aA	13,23 bB
nov	8,68 aB	9,54 aB	7,73 bC	11,83 aA	33,47 aA	33,93 bA	31,28 bA	31,72 bA	12,95 aA	12,95 bA	9,74 bA	13,49 bA
dez	7,60 aB	6,90 bB	9,14 aA	9,15 bA	33,03 aA	33,42 bA	32,55 bA	32,55 bA	11,23 aA	11,53 bA	9,75 bA	11,06 bA
CV (%)		9,	64		5,82				16,2			
Erro	0,44					1,14				1,21		

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade; letras minúsculas na coluna; letras maiúsculas na linha.

As frutas do morangueiro podem ser enquadradas em duas classes distintas em relação ao diâmetro, classe 15 quando o diâmetro da fruta estiver entre 15 a 35 mm e classe 35, em que as frutas devem apresentar diâmetro acima de 35mm, de acordo com as Normas de Classificação do Morango (PBMH e PIMo, 2009). Dentro deste contexto, somente a forma de cultivo em slab no mês de setembro no genótipo de dia curto, as frutas colhidas agrupam-se na classe 35. Para as demais formas de cultivo, meses de colheita e genótipos a média do diâmetro das frutas pertencem à classe 15. Além disso, cabe destacar que, 15 mm é o diâmetro mínimo para comercialização das frutas, desta maneira as frutas produzidas em todas as formas de cultivo e meses de colheita, estão aptas à comercialização.

O diâmetro das frutas manifestou-se de maneira diferenciada em ambos os genótipos em relação aos sistemas de cultivo. Richter et al (2017b), ao avaliarem a produção de três cultivares de morangueiro de dia neutro (Albion, San Andreas e Capitola) na safra 2016/17, em diferentes sistemas de cultivo, não observaram diferenças significativas entre os sistemas em solo e suspenso. O contrário foi observado neste estudo, que em todos os meses de colheita observouse diferenças entre as formas de cultivo.

O comprimento médio das frutas entre os meses de colheita foi de 33,94 e 35,50 mm para os genótipos de dia curto e neutro respectivamente. Valores superiores aos observados por Guimarães, et al (2013), ao estudarem as características físico-química em diferentes cultivares de morangueiro, em que o comprimento médio das frutas foi de 30,74 mm (cultivares de dia curto - Oso Grande, Festival, Camarosa, Ventana e Palomar) e 30,60 mm (cultivar Albion de dia neutro).

O comprimento e o diâmetro das frutas podem ser influenciados pelas condições climáticas, ou seja, meses que apresentam temperaturas mais elevadas e dias mais longos podem proporcionar um incremento significativo no tamanho das frutas, pois proporcionam maior atividade fotossintética (Franco et al., 2017a). De maneira geral, para os dois genótipos e em todas as formas de cultivo, as frutas colhidas no mês de setembro obtiveram maior comprimento e massa. Provavelmente devido ao fato de que neste mês a colheita incipiente foi pequena, proporcionando o maior incremento no tamanho destas frutas, fator interessante para as características do genótipo. Além disso, as flores primárias que produzem os primeiros frutos a serem colhidas, são maiores devido ao maior aporte de pistilos, que dão origem aos aquênios, pois sabe-se que quanto maior for a produção de aquênios, mais auxina é produzida, induzindo o aumento no tamanho das frutas (Antunes et al., 2016).

Os valores obtidos para comprimento e massa corroboram com os verificados por Franco et al (2017a), ao avaliarem as frutas colhidas de maio a setembro. Observaram para este último mês,

comprimento e massa superiores aos demais meses para cultivar San Andreas.

Ao avaliarem o desempenho de cinco cultivares de dia neutro (Albion, Aromas, Portola, San Andreas e Monterrey) e três cultivares de dia curto (Camarosa, Camino Real e Benícia), Züge et al (2016) colheram frutas com massa unitária semelhantes às observadas no presente estudo, sendo de 13,1 e 13,4 g para as cultivares de dia neutro e curto respectivamente. O aumento da massa das frutas colhidas no genótipo de dia curto, pode estar correlacionado com o teor de clorofila, resultando na maior produção de fotoassimilados, o que possibilitou o aumento da deposição de matéria vegetal nas frutas, incrementando na massa das frutas produzidas.

Quanto à massa, as frutas podem ser classificadas em extra (maior que 14g) e de primeira (entre 13 e 6g) (Rebelo & Balardin, 1997). Desta maneira, no genótipo de dias curtos, as frutas colhidas que se enquadram na classe "extra" foram obtidas no mês de setembro em todas as formas de cultivo, no mês de outubro, nas formas de cultivo calha e vaso, e em novembro somente no cultivo canteiro. Já no genótipo de dias neutros as frutas colhidas nos canteiros agrupam-se na classe "extra" no mês de setembro no cultivo em canteiro e nas formas de cultivos em calha e vaso no mês de outubro. Para os demais meses e formas de cultivo, as frutas colhidas pertencem à classe "de primeira".

Tabela 6. Comprimento de frutas (mm) do genótipo CREA FRF LAM 269.19 de dias curtos nos meses de avaliação de setembro a dezembro em quatro diferentes sistemas de cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020).

Meses de	CREA FRF LAM 269.19										
avaliação	SL	CL	V	CA							
set	42,29 a	39,35 a	40,90 a	39,59 a							
out	33,24 a	36,39 a	34,76 a	33,45 a							
nov	29,95 a	30,13 a	31,18 a	33,60 a							
dez	32,63 b	38,36 a	33,89 b	38,42 a							
CV (%)		7.	,2								
Erro		1,	47								

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade.

Tabela 7. Diâmetro de frutas (mm) de do genótipo CREA FRF 114.01 de dias neutros nos meses de avaliação de setembro a dezembro em quatro diferentes sistemas de cultivo (Slab-SL, Calha-CL, Vaso-V, Canteiro-CA) para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020).

Meses de avaliação	CREA FRF 114.01						
	SL	CL	V	CA			
set	27,54 b	30,16 a	25,38 b	30,81 a			
out	29,66 a	31,86 a	27,89 a	29,14 a			
nov	26,95 a	28,96 a	25,51 a	28,84 a			
dez	25,85 a	25,95 a	25,28 a	25,28 a			
CV (%)		6,	47				
Erro		1,	04				

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade.

Para aspectos produtivos houve interação entre os fatores (genótipos x formas de cultivo) em todas as variáveis analisadas (Tabela 8).

Plantas com maior produção total e número de frutas foram obtidas quando cultivadas em canteiro e calha, para os dois genótipos estudados. Podendo estar correlacionado com o maior espaço para desenvolvimento do sistema radicular e, consequentemente da planta como um todo. Da mesma maneira, as formas de cultivos em slab e vasos podem estar relacionados com as limitações proporcionadas pelo sistema de cultivo ocasionando a redução da produção nestes sistemas (Tabela 3).

Resultado semelhante foi observado por Miranda et al. (2014), ao avaliarem o uso de slabs e calhas no cultivo das cultivares Festival e Oso Grande de dias curtos em Ibiapina/CE, com as colheitas sendo realizadas de junho de 2012 a janeiro de 2013. Os autores concluíram que a produção total na forma de cultivo em calhas foi superior ao das plantas produzidas em slab. No entanto, as médias observadas pelos autores foram superiores às obtidas no presente estudo, para ambos os sistemas de cultivo (calha 1220,8 g.planta⁻¹ e slab 872 g.planta⁻¹).

Tabela 8. Produção total (g.planta⁻¹), N° de Frutas, Frutas pequenas (g.planta⁻¹), Produção Comercial (g.planta⁻¹), Produtividade (t.ha⁻¹)de dois genótipos (CREA FRF LAM 269.19 de dias curtos - DC e CREA FRF 114.01 de dias neutros - DN) de morangueiro em quatro diferentes sistemas de cultivo no período de junho de 2020 a janeiro de 2021 para às condições edafoclimáticas de Laranjeiras do Sul-PR (UFFS, 2020-21).

				A	spectos Produtiv	/OS					
	Produção total (g.planta ⁻¹)		N° de Frutas		Frutas pequenas (g.planta ⁻¹)		Produção Comercial (g.planta ⁻¹)		Produtividade (t.ha ⁻¹)		
Formas de	Genótipos										
cultivo	DC	DN	DC	DN	DC	DN	DC	DN	DC	DN	
Slab	212,34 bB	638,57 bA	17,933 bB	62,00 bA	10,53 aA	21,38 cA	202,18 bB	613,86 bA	13,47 bB	40,92 aA	
Calha	385,44 aB	653,46 bA	33,00 aB	63,46 bA	31,71 aB	77,43 aA	353,05 aB	558,69 bA	23,53 aB	39,04 aA	
Vaso	215,90 bB	338,57 cA	21,26 bA	32,00 cA	20,48 aA	24,96 cA	194,93 bB	363,81 cA	11,69 bB	21,82 bA	
Canteiro	375,18 aB	802,65 aA	31,20 aB	79,13 aA	22,57 aB	62,09 bA	360,77 aB	740,47 aA	9,61 bB	19,74 bA	
CV (%)	14,47		15,41		21,06		14,65		17,62		
Erro	37,66		3,	3,75		4,12		35,94		2,27	

Médias seguidas por letras iguais não diferem entre si pelo teste de Scott-Knott, ao nível de 5% de probabilidade; letras minúsculas na coluna; letras maiúsculas na linha.

Fernandes Júnior et al (2002), não observaram para produção total por planta diferenças significativas entre o sistema hidropônico utilizando calhas e em solo para a cultivar de dias curtos Campinas IAC-2712 em seu estudo conduzido em Jundiaí/SP. Estes resultados corroboram com os observados neste estudo para o genótipo de dia curto. Por outro lado, Cecatto et al (2013) estudando o desempenho de cultivares de morangueiro (Camarosa, Florida Festival, Camino Real, San Andreas, Monterey, Portola e Ventana), observaram que a produção em sistema fora de solo com substrato (326,00 g. planta⁻¹) foi significativamente menor em relação ao cultivo em solo (873,00 g. planta⁻¹), corroborando com este trabalho.

A produção média por planta de cultivares já estabelecidas, de acordo com Gonçalves et al (2013), podem ser utilizadas para comparação de desempenho produtivo dos genótipos estudados. A cultivar Camarosa (dias curtos) apresenta capacidade produtiva de 850 a 1050 g, e a cultivar San Andreas (insensível ao fotoperíodo) pode produzir de 700 a 900 g por planta. Diante do exposto, conclui-se que o genótipo de dias curtos apresentou produção inferior em todos os sistemas. Já o genótipo de dia neutro, somente nos canteiros a produção encontrou-se aproximada da cultivar San Andreas.

Importante ressaltar que a implantação do experimento foi realizada tardiamente, sendo um dos fatores contribuintes para que a cultivar de dia curto tivesse a produção prejudicada. Visto que a janela ideal para plantio de cultivares de dias curtos é de fevereiro a março, possibilitando que a planta possa se desenvolver de maneira adequada e consequentemente afetar na produção. Além disso, cabe destacar que no mês de setembro os dias começam a alongar-se, e foi neste mês que a produção foi iniciada, prejudicando a produtividade do genótipo de dias curtos.

E ainda, pode-se observar que o genótipo de dia neutro apresentou maior número de folhas e coroas (Tabela 3) aliado a isso a área fotossinteticamente ativa é maior, resultando no incremento dos resultados de produção e número de frutas.

Identificou-se em ambos os genótipos e formas de cultivo que quanto mais elevado o número de frutas totais produzidas, maior é o número de frutas que possuem massa menor que 6 g, e que não são comercializáveis como fruta in natura (Tabela 8). Esse fato pode estar relacionado à quantidade de eixos florais formados em que são originadas as flores. Sendo classificadas como: primárias que frutificam primeiro produzindo frutos maiores, já as flores secundárias e terciárias dão origem a frutos menores devido a possuírem um menor número de pistilos (Palha, 2005).

Para todas as situações fatoriais desta pesquisa, verificou-se que a produção de frutas comerciais, caracterizada pelo somatório das frutas com massa maior que 6 g, está de acordo com o recomendado para cultivo. Pois de acordo com Rebelo e Balardin (1997), a produção

mínima de frutas comerciais não deve ser inferior a 300 g.planta⁻¹. Além disso, esses resultados são superiores aos observados por Mazon (2019), a autora em seu estudo conduzido na cidade de Verê/PR, que teve por objetivo avaliar o desempenho de diferentes cultivares em slab, obteve valores de 212,23g para a cultivar de dia curto e 295,84 g para as cultivares de dia neutro.

Tais valores obtidos em relação a produção e produtividade, são semelhantes aos verificados por Moritz et al (2021), observaram maior produção e produtividade dos genótipos de dia neutro em relação aos de dia curto nas condições de Laranjeiras do Sul/PR. Verificaram a produção em gramas por planta de 373,24 g para os genótipos de dia neutro, e 325,47 g para os genótipos de dia curto, porém com produtividade superior quando analisado o cultivo em solo (27,99 t.ha⁻¹ para os genótipo de dia neutro e 23,40 t.ha⁻¹ para os genótipos de dia curto). Cabe ressaltar que o espaçamento entre plantas foi menor (0,30m) que o adotado no presente estudo.

Para produtividade o desempenho dos genótipos estudados em Laranjeiras do Sul/PR nas diferentes formas de cultivo pode ser considerado satisfatório quando comparados com cultivares já estabelecidas. Além disso, de acordo com Antunes et al (2020), a produtividade média do morangueiro no Paraná é de 30 t.ha⁻¹.

A baixa produtividade no cultivo em canteiro se deve ao menor número de plantas que podem ser alocadas por hectare (26.666 plantas.ha⁻¹) em relação às demais formas de cultivo. Enquanto que nas formas de cultivo em slab, calha (66.666 plantas.ha⁻¹) e vasos (60.000 plantas.ha⁻¹) o número de plantas por área é maior. Além disso, as plantas cultivadas em solo tendem a manterse mais vigorosas e desta maneira, necessitam de um espaçamento maior. E ainda, ao observar a produção por planta, nota-se que o cultivo em canteiro apresenta-se com produção significativa (Tabela 8).

Cabe destacar que a produtividade alcançada nos canteiros foi satisfatória se comparada a cultivares já estabelecidas, cultivadas na região. Pois, Camargo et al (2010), ao avaliarem a produção em canteiro em sistema orgânico e convencional na cidade de Guarapuava/PR, obtiveram produtividade inferiores às quantificadas neste estudo, com valores de 16,83 t.ha⁻¹ para a cultivar Aromas (dia neutro). Quando observada a produtividade no sistema de cultivo em slab, Franco et al (2017b), observou média de 26,02 t.ha⁻¹ para cultivar San Andreas, resultado inferior ao obtido para o genótipo de dias neutros no presente estudo.

A maior produção total, comercial e produtividade das plantas do genótipo de dias neutros em todas as formas de cultivo, se deve ao fato de que o fotoperíodo não interfere na diferenciação floral, permitindo com que a produção possa persistir durante todo o ano, desde que as

temperaturas médias permaneçam inferiores a 28°C, pois no período de avaliação do experimento as médias de temperaturas permaneceram na faixa dos 22°C. Já o genótipo de dias curtos tem seu pico produtivo nos meses de inverno, cessando a produção quando o número de horas de luz diárias ultrapassa de 14 horas. Além disso, pode-se correlacionar o aumento da produção do genótipo de dia neutro com o maior desenvolvimento da planta em relação ao número de folhas e coroas (Tabela 3), desta maneira, tem-se maior área fotossinteticamente ativa, impactando na produção.

CONCLUSÃO

O genótipo CREA FRF 114.01 iniciou a produção antecipadamente em relação a CREA FRF LAM 269.19.

A maior produção e teor de sólidos solúveis das frutas foram obtidas em canteiro em ambos os genótipos.

O genótipo de dias neutros foi mais produtivo nas condições edafoclimáticas de Laranjeiras do Sul-PR.

O genótipo de dias curtos teve seu desempenho prejudicado pelas condições climáticas.

AGRADECIMENTOS

A Universidade Federal da fronteira Sul, pela concessão da bolsa pelo Edital Nº 270/GR/UFFS/2020, para execução do projeto PES2020-0308.

Ao Edital MCTI/MAPA/SEAD/MEC/CNPq – N°21/2016, Processo 403087/2017.

Ao grupo de pesquisa Horticultura da UFFS - LS, pelas contribuições prestadas.

A todos que de alguma forma contribuíram para a realização deste trabalho.

REFERÊNCIAS

AGRIANUAL 2020: **anuário da agricultura brasileira.** São Paulo: FNP, Agribusiness intelligence. p. 139 -152. 2019.

ALVES, C.M. Densidade de plantio e conservação pós-colheita de cultivares de morangueiro em sistema de produção fora de solo. Dissertação. 85 p.Universidade Federal de Pelotas-UFPel. 2015.

ANTUNES, L. E. C.; BONOW, S.; REISSER JUNIOR, C. Morango: crescimento constante em área e produção. **Anuário Campo & Negócios HF**, v. 37, p. 88-92. 2020.

ANTUNES, L. E. C.; RISTOW, N. C.; KROLOW, A. C. R.; CARPENEDO, S.; REISSER JÚNIOR, C. Yield And Quality Of Strawberry Cultivars. **Horticultura Brasileira**, v. 28 n. 2 p. 222-226. 2010.

ANTUNES, L. E. C.CARVALHO, L. G.; SANTOS, A. M. dos. **A cultura do morango.** Embrapa Informação Tecnológica. 2. ed. 52 p. Brasília, DF. 2011.

ANTUNES, L. E. C.; PERES, N. A. Strawberry Production in Braziland South America. **International Journal of Fruit Science**, v. 13, n. 1-2, p. 156-161. 2013.

ANTUNES, L. E. C.; REISSER JUNIOR, C.; SCHWENGBER, J. E. **Morangueiro.** Embrapa. Brasília, DF. 1 ed. 589, p. 2016.

ANTUNES O. T.; CALVETE, E. O.; ROCHA, H. C.; NIENOW, A. A.; MARIANI, F.; WESP, C. L. Floração, frutificação e maturação de frutos de morangueiro cultivados em ambiente protegido. **Horticultura Brasileira**, v. 24, n. 4, p. 426-430. 2006.

BECKER, T. B.; GONÇALVES, M. A.; GOMES, S. R.; BARUZZI, G.; ANTUNES, L. E. C. Caracterização de frutas de morangueiro de genótipos italianos na região de Pelotas-RS. VII Encontro Sobre Pequenas Frutas e Frutas Nativas do Mercosul Resumos expandidos. Embrapa. 2016.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 28, de 18 de setembro de 2012. Diário Oficial da União, Brasília, DF, 19 set. 2012. Seção 1.

BRASIL. Instrução normativa nº 46, de 06 de outubro de 2011. Lei nº 10831, de 23 de dezembro de 2003. Diário Oficial da República Federativa do Brasil, Poder Executivo, Brasília, DF, 06 Outubro. 2011. Seção 1, p. 8.

BUENO, S. C. S.; MAIA, A. H.N.; TESSARIOLI NETO J. Florescimento de 17 cultivares de morangueiro (*Fragaria* x ananassa Duch.), em São Bento do Sapucaí—SP. In: **CONGRESSO BRASILEIRO DE FRUTICULTURA**, 17. Belém: SBF (CD-ROM). 2002.

CAMARGO, L. K. P.; RESENDE, J.T.V.; GALVÃO, A.G.; CAMARGO, C.K.; BAIER, J.E.; Desempenho produtivo e massa média de frutos de morangueiro obtidos de diferentes sistemas de cultivo. **Revista Ambiência Guarapuava**, **Guarapuava**, v. 6, n.2, p. 281-288. 2010.

- CAVIGLIONE, J. H.; KIIHL, L. R. B.; CARAMORI, P. H.; OLIVEIRA, D. de. 2000. Cartas climáticas do Paraná. Londrina PR: IAPAR, CD.
- CARVALHO, S. F., PICOLOTTO, del.; FERREIRA, L. V.; VIGNOLO, G. K.; GONÇALVES, M. A.; REISSER JUNIOR, C. Desempenho produtivo de cultivares de dias curtos de morangueiro sob túneis baixos na região de Pelotas-RS. In: CONGRESSO BRASILEIRO DE FRUTICULTURA, 22., 2012. Bento Gonçalves. Anais, **Embrapa: Repositório ALICE.** Disponível em:
- https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/939367/1/4YGV.pdf>. Acesso em: 18 de abril de 2020a.
- CARVALHO, M. A. F.; SILVEIRA, P. M.; SANTOS, A. B. Utilização do Clorofilômetro para Racionalização da Adubação Nitrogenada nas Culturas do Arroz e do Feijoeiro. Embrapa, 14 p. 2012. (Comunicado Técnico, n. 205)b.
- CECATTO, A. P.; CALVETE, E. O.; NIENOW, A. A.; COSTA, R. C. D.; MENDONÇA, H. F. C.; PAZZINATO, A. C. Culture systems in the production and quality of strawberry cultivars. **Acta Scientiarum. Agronomy**, v.35, n. 4, p. 471-478. 2013.
- CHARLO, H. C. O.; CASTOLDI, R.; FERNANDES, C.; VARGAS, P. F.; BRAZ, L. T. Cultivo de híbridos de pimentão amarelo em fibra da casca de coco. **Horticultura Brasileira**, v. 27, n. 2, p. 155-159. 2009.
- COCCO, C.; GONÇALVES, M. A.; PICOLOTTO, L.; FERREIRA, L. V.; ANTUNES, L. E. C. Crescimento, desenvolvimento e produção de morangueiro a partir de mudas com diferentes volumes de torrão. **Revista Brasileira de Fruticultura,** v. 34, n. 4, p. 919-927. 2015.
- DAL'SOTTO, T. C. Estudo de viabilidade econômica para implantação de um sistema de cultivo hidropônico em uma propriedade rural no oeste do Paraná. Trabalho de Conclusão de Curso, 64p. Universidade Tecnológica Federal do Paraná, Campus Medianeira Medianeira, 2013.
- EMBRAPA. **Sistema brasileiro de classificação de solos.** Centro Nacional de Pesquisa de Solos: Rio de Janeiro, 2013.
- FERREIRA, D. F. Sisvar: um sistema computacional de análise estatística. **Ciência e Agrotecnologia**, v. 35, n. 6, p.1039-1042. 2011.
- FRANCO, E. DE O.; ULIANA.C.; LIMA, C. S. M. Características físicas e químicas de morango 'San Andreas' submetido a diferentes posicionamentos de slab, densidades de plantio e meses de avaliação. **Revista Iberoamericana de Tecnología Postcosecha.** v. 18, n. 2, p. 106-114. 2017.a
- FRANCO, E. de O.; LIMA, C. S. M.; NENNING, C. R. Crescimento e desenvolvimento de morangueiro 'sanandreas' em diferentes posicionamentos de slab e densidades de plantio em sistema de cultivo em substrato. **Revista Científica Eletrônica de Agronomia** ISSN: 1677-0293, Periódico Semestral, n. 31. 2017.b
- GIMÉNEZ, G.; ANDRIOLO, J.; GODOI, R. Cultivo sem solo do morango. Ciência Rural.

- v. 38, n. 1. p. 273-279. 2008.
- GODOI, R. dos S.; ANDRIOLO, J. L.; FRANQUÉZ, G., G.; JÄNISCH, D. I.; CARDOSO, F. L.; VAZ, M. A. B. Produção e qualidade do morangueiro em sistemas fechados de cultivo sem solo com emprego de substratos. **Ciência Rural**, v. 39, n. 4, p. 1039 -1034. 2009.
- GONÇALVES, M. A.; COCCO, C.; ANTUNES, L. E. C. Informações técnicas de cultivares de morangueiro para a região de Pelotas RS. Embrapa Clima Temperado, 2015. Disponível em:
- https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1039833/1/CutivaresdeMoran goa3.pdf. Acesso em: 10 de maio de 2021.
- GONÇALVES, M. A.; VIGNOLO, G. K.; ANTUNES, L. E. C.; REISSER JUNIOR, C. **Produção de morangos fora do solo**. Pelotas:Embrapa Clima Temperado, 2016. 32 p. (Comunicado técnico, 410)a.
- GONÇALVES, M. A.; PICOLOTTO, L.; COCCO, C.; VIGNOLO, G. K.; ANTUNES, L. E. C. Crescimento e desenvolvimento. In. ANTUNES, L. E. C.; REISSER JUNIOR, C.; SCHWENGBER, J. E. Morangueiro. Embrapa. Brasília, DF. 1 ed. p. 48-66. 2016b.
- GONÇALVES, M. A.; VIGNOLO, G. K.; ANTUNES, L. E. C.; REISSER JUNIOR, C. O sistema. **Campo e negócios: hotifruti**. p. 78-81. 2017.
- GUIMARÃES, A. G.; VIEIRA, G.; BATISTA, A. G.; PINTO, N. A. V. D.; VIANA, D. J. S. Características físico-químicas e antioxidantes de cultivares de morangueiro no Vale do Jequitinhonha. **Tecnologia e Ciência Agropecuária**, v. 7, n.2, p. 35-40. 2013.
- LEITE, C. D.; MEIRA, A. L. **Fertilidade do solo e nutrição de plantas.** Coordenação de Agroecologia Ministério da Agricultura, Pecuária e Abastecimento. 2012. Disponível em: http://www.agricultura.gov.br/assuntos/sustentabilidade/organicos/fichasagroecologicas/arqui vos-fertilidade-do-solo/12-biofertilizante-enriquecido-commicrorganismos-eficientes.pdf. Acesso em: 25 de janeiro de 2021.
- LISBOA, J.; PALHA, M. da G.; OLIVEIRA, C. M. Influência do substrato na fenologia, na biometria e produtividade das cultivares de morangueiro Camarosa, Rábida, San Andreas e Portola. V Colóquio Nacional da Produção de Pequenos Frutos. In: **Actas Portuguesas de Horticultura**, n.26. p. 19 28. 2017.
- LOPES, H. R. D.; ALVES, R. T.; SOARES, J. R. R. OLIVEIRA, N. de M. P. A cultura do morangueiro no Distrito Federal. 90 p. 2 ed. Brasília: Emater-DF, 2019.
- MAZON, S. Desempenho de cultivares de morangueiro em sistema de bancada sob manejo orgânico para o Sudoeste do Paraná. Dissertação (Mestrado). 44 p. Universidade Tecnológica Federal do Paraná-UTFPR. Pato Branco-PR. 2019.
- MIRANDA, F. R. de; DA SILVA, V. B.; SANTOS, F. S. R.; DA SILVA; C. F. B; ROSSETI, A. G.; SOARES, I. Produtividade e eficiência de utilização da água do morangueiro em cultivo hidropônico fechado utilizando substrato de fibra de coco. **II INOVAGRI International Meeting**. p. 1181-1186. 2014.

- MORITZ, P.; HILATCHUK, C. I. V.; LIMA, C. S. M.; ROSA, G. G. da; FAGUERAZZI, A. F.; RUFATO, L. Fenologia, produção e produtividade de cinco genótipos de morangueiro nas condições edafoclimáticas do Município de Laranjeiras do Sul–PR. **Research, Society and Development**, v.10, n.5, p. 1-11. 2021.
- OTTO, R. F.; MORAKAMI R. K.; REGHIN, M. Y.; CAIRES, E. F. Cultivares de morango de dia neutro: produção em função de doses de nitrogênio durante o verão. **Horticultura Brasileira.** v.27, n. 2, p. 217-22. 2009.
- PÁDUA, J. G.; ROCHA, L. C. D.; GONÇALVES, E. D.; ARAÚJO, T. H. DE.; CARMO, E. L. DO. COSTA, R. Comportamento de cultivares de morangueiro em Maria da Fé e Inconfidentes, sul de Minas Gerais. **Revista Agrogeoambiental**, v. 7, n. 2, p. 69-79. 2015.
- PALHA, M. G. **Manual do morangueiro**. 137 p. Projeto Pro Agro DE & D N° 193: Tecnologias de produção integrada no morangueiro visando a expansão da cultura e reconquista do mercado. 1 ed. 2005.
- PALOMBINI, M. C.; PEIL, R.; SIGNORINI, C. **Sistema aberto ou fechado Qual o melhor para o morango?**. 2019. Disponível em: https://revistacampoenegocios.com.br/sistema-aberto-ou-fechado-qual-o-melhor-para-o-morango/. Acesso em: 10 de maio de 2020.
- PEREIRA, W. R.; SOUZA, R. J.; YURI, J. E.; FERREIRA, S. Produtividade de cultivares de morangueiro, submetidas a diferentes épocas de plantio. **Horticultura Brasileira**.v.31, n.3, p. 500-503. 2013.
- PILLA, R. V.; GIMENEZ, J. I. Cultivo de morangueiro em diferentes sistemas sob ambiente protegido. **Revista Científica Eletrônica de Agronomia**. n. 31, 15 p. 2017.
- PINELLI, L. D. O.; MORETTI, C. L.; SANTOS, M. S. dos; CAMPOS, A. B.; BRASILEIRO, A. V.; CÓRDOVA, A. C.; CHIARELLO, M. D. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. **Journal of Food Composition and Analysis**, v. 24, n. 1, p. 11–16. 2011.
- PBMH; PIMo. **Programa brasileiro para a modernização da horticultura e produção integrada de morango.** Normas de Classificação de Morango. São Paulo: CEAGESP, 2009. (Documentos, 33).
- PIVOTO, H. C.; MARTELLETO, L. A. P. Avaliação de Diferentes Meios Semihidropônicos Orgânicos para Cultivo do Morangueiro. **Cadernos de Agroecologia**. v. 9, n. 4, p. 1-5. 2014.
- PIVOTO, H. C.; SILVÉRIO, T.; REZENDE, N. C.; SALLES, R. E.; MARTELLETO, L. A. P. Aspectos quantitativos e qualitativos da produção de morangueiros cv. 'Camino Real' cultivados em estufa e fertirrigados com diferentes meios semi-hidropônicos orgânicos. **Cadernos de Agroecologia**. v. 10, n. 3, p. 1-5. 2015.
- RADIN B.; LISBOA, B. B.; WITTER, S.; BARNI V; REISSER JUNIOR, C.; MATZENAUER, R.; FERMINO, M. H. Desempenho de quatro cultivares de morangueiro em duas regiões ecoclimáticas do Rio Grande do Sul. **Horticultura Brasileira**. v.29, n. 3, p. 287-291. 2011.

- REBELO, J.A.; BALARDIN, R.S. **A cultura do morangueiro.** 3. ed. Florianópolis: EPAGRI, 1997. 44 p. (EPAGRI. Boletim Técnico, 46).
- RESENDE, J. T. V. de; MORALES, R. G. F.; FARIA, M. V.; RISSINI, A. L. L.; CAMARGO, L. K. P.; CAMARGO, C. K. Produtividade e teor de sólidos solúveis de frutos de cultivares de morangueiro em ambiente protegido. **Horticultura Brasileira**, v. 28, n. 2, p. 185-189. 2010.
- RICHTER, A.F.; SILVA, P.S.; ARRUDA, A. L.; FAGUERAZZI, A. F.; ZANIN, D. S.; RUFATO, L; SOARES, M. Crescimento Vegetativo em Diferentes Sistemas de Cultivo de Morangueiro. **Revista da 14^a Jornada de Pós-Graduação e Pesquisa.** Urcamp Bagé RS, v. 14, n.14, p. 625-630. 2017a.
- RICHTER, A.; FAGUERAZZI, A. F; ZANIN, D. S; SILVA, P. S. DA; ARRUDA, A. L; TILWITZ, K. V. Produção de morangueiro em diferentes sistemas de cultivo. **Revista da Jornada da Pós-Graduação e Pesquisa Congrega**, v. 14, n.14, p. 2307-2314. 2017.b
- SANTOS, B. M., STANLEY, C. D.; WHIDDEN, A. J.; SALAME-DONOSO, T. P., WHITAKER, V. M.; HERNANDEZ-OCHOA, I. M.; HUANG, P. W.; TORRES-QUEZADA, E. A. Improved sustainability through novel water management strategies for strawberry transplant establishment in Florida, United States. **Agronomy**, Basel, v. 2, n. 4, p. 312-320. 2012.
- SANTI, F.C.; COUTO, W.R. Morango em cultivo orgânico. **Revista Científica Eletrônica.** v.2, n.1, p. 1-10. 2013.
- SAUSEN, D.; FERREIRA, C. R. L.; LOPES, S. C. D.; MARQUES, L. P.; SOUZA, A. J. M. de; ALVES, E. C. G. de A.; PATROCÍNIO, E. S. A. do. Cultivo fora do solo: uma alternativa para áreas marginais. **Brazilian Journal of Development.** v. 6, n. 3, p. 14888-14903. 2020.
- STRASSBURGER, A.S.; PEIL; R.M.N.; SCHWENGBER, J.E.; MEDEIROS, C.A.B.; MARTINS, D.S.; SILVA, J.B. Crescimento e produtividade de cultivares de morangueiro de "dia neutro" em diferentes densidades de plantio em sistema de cultivo orgânico. **Bragantia**. v. 69, n. 3, p. 623-630. 2010.
- STREIT, N. M.; CANTERLE, L. P.; CANTO, M. W. do; HECKTHEUER, L. H. H. As clorofilas. **Ciência Rural**, v. 35, n. 3, p.748-755. 2005.
- Sociedade Brasileira de Ciência do Solo (SBCS). Núcleo Estadual do Paraná (NEPAR). **Manual de adubação e calagem para o Estado do Paraná**. Curitiba: SBCS/NEPAR, 482 p. 2017.
- TREVISAN, F.; LIMA, C. S.M.; PINTO. V. Z.; BONOME, L. T. da S.; LIZ. K. M. de. Ácido Salicílico no desenvolvimento de plantas e nas características físico-químicas de frutas de morango "Milsei-Tudla". **Revista Iberoamericana de Tecnología Postcosecha.** v. 18, n. 2, p. 106-114. 2017.
- VIGNOLO, G. K.; ARAÚJO, V. F.; KUNDE, R. J.; SILVEIRA C. A. P.; ANTUNES, L. E. C. Produção de morangos a partir de fertilizantes alternativos em pré-plantio. **Ciência Rural**,

v. 41, n. 10, p. 1755-1761. 2011.

ZÜGE, P. G. U.; VIGNOLO, G. K.; ARAÚJO, V. F.; KRAUSE, R. V.; ANTUNES, L. E. C. Competição de oito cultivares de morangueiro nas condições climáticas de Pelotas-RS. In: **Encontro de Iniciação Científica E Pós-graduação da Embrapa Clima Temperado**, Pelotas. Anais... p105-107. Pelotas: Embrapa Clima Temperado. 2016.

ANEXOS

Anexo 1. Foto da embalagem do substrato comercial utilizado na confecção do substrato utilizado no preenchimento dos recipientes de cultivo. Laranjeiras do Sul-UFFS, 2020.

Anexo 2. Resultados da análise físico-química do solo, da área de implantação do sistema em solo.

Av Manoel Ribas, N°:4253 - Sala 3 CEP:85055-010 Conradinho - Guarapuava - PR agrotecsolo@agrotecsolo.com.br - (42) 3035-1117

LAUDO DE CLASSIFICAÇÃO DO SOLO

Nome:

UFFS - Universidade Federal Fronteira Sul

Origem: Coprossel

Endereço: - Laranjeiras do Sul/PR

Propriedade: não informado

11/01/2017

Nº da Amostra	Identificação da	Profundidade da Arnostra 1	Mudança de Textura do solo nos primeiros 50 cm 1	Granulometria (%)			
	Amostra (gleba - área)			Areia	Sitte Argila		Especificação do solo *
00071/17	0-20 cm - Mandala - (null)	0 - 50 cm	Não Ocorre	17,0	23,0	60,0	SOLO TIPO 3

Observações:

¹ Informações prestadas pelo cliente;
 ² Conforme IN nº 10/2005 alterada pela IN nº 12/2005.

Laudo emitido pela internet em 16/01/2017 - 08:37:56

Luiz Felipe Basile Ribeiro CREA/PR 27164-D Responsável Técnico