
FEDERAL UNIVERSITY OF FRONTEIRA SUL
CAMPUS OF CHAPECÓ

COURSE OF COMPUTER SCIENCE

DOUGLAS ROSA

A PROTOTYPE WEB PLATFORM TO CONFIGURE APIS FOR MOBILE
APPLICATIONS WITH GENERIC DATA STRUCTURES IN DATABASES

CHAPECÓ
2022

DOUGLAS ROSA

A PROTOTYPE WEB PLATFORM TO CONFIGURE APIS FOR MOBILE
APPLICATIONS WITH GENERIC DATA STRUCTURES IN DATABASES

Final undergraduate work submitted as requirement to
obtain a Bachelor’s degree in Computer Science from the
Federal University of Fronteira Sul.
Advisor:: Prof. Dr. Samuel da Silva Feitosa

CHAPECÓ
2022

Rosa, Douglas

A PROTOTYPEWEB PLATFORMTOCONFIGUREAPIS FOR
MOBILE APPLICATIONS WITH GENERIC DATA STRUCTURES
IN DATABASES /Rosa, Douglas. – 2022.

47 pp.: il.

Advisor:: Prof. Dr. Samuel da Silva Feitosa.
Final undergraduate work – Federal University of Fronteira Sul,

course of Computer Science, Chapecó, SC, 2022.

1. Configurable APIs. 2. Generic data structures. 3. Mobile appli-
cations. 4. Model-Driven Engineering. 5. Generation of RESTful APIs.
I. Prof. Dr. Samuel da Silva Feitosa, advisor. II. Federal University of
Fronteira Sul.

© 2022
All rights reserved to Douglas Rosa. This work or any portion thereof may not be reproduced
without citing the source.
E-mail: douglasrosa0110@gmail.com

ACKNOWLEDGEMENT

First and foremost, I give thanks toGod for all his protection, kindness and care with this
objective reached and so important to my professional career giving me strength in discouraging
times at university.

I thank for having my wife Graziele Garbin Moreira da Silva Rosa and my little boy
Augusto Moreira Rosa during all this time, makingmy days lighter and happier, hugely missing
them in the travels and stays in the city of the university campus.

Thanks to my parents, Lovani Maria Halmenschlager and José Nerino Rosa, for their
love and support throughout my life and in particular my mother for her dream of having her
children graduated.

Not forgetting my first and continuous reference in software development area, my
brother Fernando Rosa, for transmitting enthusiasm in all the conversations that involve web
development.

I am profoundly grateful to my final undergraduate work advisor, Prof. Dr. Samuel da
Silva Feitosa, an amazing and passionate teacher about everything he does, for their guidance
throughout this study and for their confidence in me.

I also would like to acknowledge Prof. Dr. Denio Duarte and Prof. Dra. Raquel
Aparecida Pegoraro as the board examiners of this defense. I am gratefully indebted to them
for their very valuable comments on this work.

ABSTRACT

In a professional software development context, it is highly noted the importance of professionals
who have enough expertise to deliver a complete product (a.k.a. full-stacks) in companies with
reduced technical staff, or in the early stages of startups. However, it is evident the lack
of mastery of the technologies to develop APIs by these professionals, not only regarding
the implementation of routes, but also the hosting project in the cloud. This problem, if
not taken care of, end up resulting in low performance and security problems. Not least,
this ecosystem deconstructs expert profiles in mobile careers. In this context, this project
proposes the development of a web platform for configuring new APIs to be consumed by these
applications, allowing developers/companies to model their systems without technical skills in
the back-end and infrastructure. The proposed API configurations are analogous to schema files,
very common in relational databases, but supporting real-time changes without requiring the
unavailability of services.

Keywords: Configurable APIs; Generic data structures; Mobile applications; Model-Driven
Engineering; Generation of RESTful APIs;

FIGURES

Figure 1 – Full-Stack in start-ups. 15
Figure 2 – Mobile app development process. 16
Figure 3 – API client connections. 17
Figure 4 – Rest APIs workflow. 19
Figure 5 – Designing a new screen in Configure.IT. 20
Figure 6 – Modeling a new table in Configure.IT. 20
Figure 7 – Showing a endpoint created in Xano. 21
Figure 8 – Showing the table characteristics in Xano. 21
Figure 9 – Relation between models in Backendless. 22
Figure 10 – Listing data of modeled tables in Backendless. 22
Figure 11 – Modeling a class attribute on Back4app . 23
Figure 12 – Designing layout for a screen . 23

Figure 13 – Files tree of the Backend. 28
Figure 14 – Request body of the creation register route. 31
Figure 15 – Snapshot of database created. 32
Figure 16 – Files tree of the Frontend. 34
Figure 17 – Screenshot of the Signin and Signup pages. 34
Figure 18 – Screenshot of the Sidebar. 34
Figure 19 – Screenshot of the APIs listing. 35
Figure 20 – Screenshot of an API detailed. 35
Figure 21 – Screenshot of Attribute form. 36
Figure 22 – Files tree of the App. 37
Figure 23 – Suggestion of configuration of uuids. 38
Figure 24 – Getting registers of the Sales model from Finances API. 38
Figure 25 – Getting registers implementation method. 39
Figure 26 – Model class and the get registers public method. 39
Figure 27 – Listing Sales registers. 40
Figure 28 – Sidebar of the app. 40
Figure 29 – Form for new product. 41

TABLES

Table 1 – Crossing concurrent features with our purpose 24

SUMMARY

1 INTRODUCTION . 11
1.1 RESEARCH PROBLEM . 11
1.2 RESEARCH HYPOTHESIS . 12
1.3 OBJECTIVES . 12
1.3.1 General objectives . 12
1.3.2 Specific objectives . 12
1.4 JUSTIFICATION . 12
1.5 STRUCTURE . 13
2 BACKGROUND READING . 15
2.1 FULL-STACK . 15
2.2 START-UPS . 16
2.3 MOBILE DEVELOPMENT . 16
2.3.1 Dominant market . 16
2.4 BACK-END DEVELOPMENT . 17
2.4.1 APIs . 17
2.4.1.1 REST . 18
2.4.1.2 GraphQL . 19
2.4.2 Business rules . 19
2.5 MARKET ANALYSIS . 20
2.5.1 Configure.IT . 20
2.5.2 Xano . 20
2.5.3 Backendless . 21
2.5.4 Parse.com . 21
2.5.5 Back4app . 22
2.5.6 Appmachine.com . 23
2.6 CROSS MARKET FUNCTIONALITIES 24
2.7 RELATED WORK . 24
2.8 CHAPTER’S FINAL REMARKS . 24
3 METHODOLOGY . 25
4 PROTOTYPE . 27
4.1 PROJECT . 27
4.2 PLATFORM DEVELOPMENT . 27
4.2.1 Backend Development . 27
4.2.1.1 Technologies . 27
4.2.1.2 Patterns . 28
4.2.1.3 Middlewares, Routes and Controllers . 28
4.2.1.3.1 Middleware . 29

4.2.1.3.2 Admin Routes . 29
4.2.1.3.3 Client Routes . 30
4.2.1.4 Models and Hooks . 31
4.2.1.4.1 Models . 31
4.2.1.4.2 Hooks . 31
4.2.1.5 Database Diagram . 31
4.2.1.6 Authentication . 32
4.2.1.7 Data security assurance . 32
4.2.2 Frontend Development . 33
4.2.2.1 Technologies . 33
4.2.2.2 Patterns . 33
4.2.2.3 Features . 33
4.2.2.4 Documentation . 36
4.3 CASE STUDY: MOBILE CLIENT DEVELOPMENT 36
4.3.1 App Development . 36
4.3.1.1 Technologies . 36
4.3.1.2 Patterns . 37
4.3.1.3 SDK Implementation . 37
4.3.1.4 Features . 39
4.4 CHAPTER’S FINAL REMARKS . 41
5 CONCLUSIONS . 43

REFERENCES . 45

11

1 INTRODUCTION

Careers in mobile applications usually require greater technical mastery of languages,
architectures, and features that many times assume a lower level of abstraction needing native
implementations. Integrated Development Environments (IDEs) such as XCode, Android Stu-
dio, and others have numerous helping tools, like the emulation of specific architectures of
hardware, and operating systems, which are most of the time physically unavailable.

In contrast, full-stack developers have extensive knowledge of all aspects of a given
technology stack. They can quickly turn a concept into a working solution. Their big picture
and visibility allow them to anticipate issues in advance and guide projects around them. Many
organizations actively recruit these developers. Full-stack development is an upward trending
concept in software development. Developers are expected to design, build and implement
end-to-end technology solutions that meet business requirements (24).

There are also cons to be considered when choosing a specialist career instead of a
full-stack profile, since it brings high responsibilities, sometimes outside of the studied and
experienced area (43). Among the factors that influence the decision, there are market offers
and the professional’s economic situation. It is important to mention there is a growing market
in the mobile development area.

We can witness professional specialization at business level, where several companies
outsource software products and services. As a result, we can note internal competitiveness in the
country, a decisive factor in guaranteeing the quality of products and services. By outsourcing
part of their activities, companies make their processes more efficient and competitive, adding
competence and technical quality to their production stages (11).

In this context, this practical project initiative proposes the development of a WEB
platform, inwhich thesemobile application developers can refrain from this stage of development
that they have no experience or interest in, allowing the construction of models, their relations,
and also the business rules, consuming the API accordingly to the documentation that will
be provided, with no need for technical skills about back-end and infrastructure. In addition,
the results of this project intend to improve the security and performance, the introduction of
best practices in the development of APIs, as well as in structuring and relating tables and in
configuring servers.

1.1 RESEARCH PROBLEM

Is it possible to provide for mobile application developers a web platform for building
configurable APIs to consume data in the cloud avoiding the need to perform tasks related to
the back-end and its infrastructure?

12

1.2 RESEARCH HYPOTHESIS

A web platform for building configurable APIs can be useful for mobile application
developers aiding the consumption of data in the cloud without the need to perform back-end
and infrastructure tasks.

1.3 OBJECTIVES

1.3.1 General objectives

Develop a web platform for building configurable APIs to aid mobile application devel-
opers to consume data on the cloud without the need to perform back-end and infrastructure
tasks.

1.3.2 Specific objectives

• Review the literature related to mobile development and database concepts;

• Propose a generic model structure for databases without the generation of specific tables;

• Develop a prototype implementation for a web platform tomodel APIs hosted in the cloud;

• Document all implemented data structures in database and application levels;

1.4 JUSTIFICATION

Developers of mobile applications need to pay attention to hybrid and/or native lan-
guages, tools with numerous resources and updates of Android and iOS operating systems for
mobile architectures, simulation and debugging in specific physical environments and situations,
optimization of hardware and storage resource data synchronized in the cloud (20).

It becomes impossible for the mobile application developer to temporarily absent himself
from this context for the development of endpoints to be consumed in mobile applications and to
enter a completely different one: the development of the back-end with maintenance in databases
and eventual maintenance in dedicated servers (5).

Many professionals seek to be specialists in what they do, allied to corporate objectives,
which aim to guarantee quality in the services and products that they provide. This is a reality
in many corporations, which generally are in a stage with well-segmented sectors internally.
However, on the other side, in corporations that are growing up or that are in initial stage, like
start-ups, there is a hard culture of full-stack developers (27).

The objective of this practical work is exactly to meet this need to assign functions to
full-stack mobile application developers by offering a tool that can focus their efforts in the

13

context of mobile development and exempt themselves from the back-end development and
deployment environments.

1.5 STRUCTURE

The remainder of this text is organized as follows: Chapter 2 summarizes the background
concepts, includingmobile and back-end development, and existing tools related to this proposal.
Chapter 3 presents the steps which should be followed during the development of this project.
Chapter 4 presents the implementation characteristics of the prototype, and finally, Chapter 5
brings some final considerations about the presented text.

15

2 BACKGROUND READING

2.1 FULL-STACK

Full-stack development is a methodology that addresses all layers of the application. In
practice, the professionals who fit into this category are developers who have enough skills and
experience to deliver a minimum viable product in a certain defined stack but not necessarily
mastery in all layers (24). The Figure 1 shows an example of some well known technologies,
but not limited to them, in full-stack cultures.

Figure 1 – Full-Stack in start-ups.

16

2.2 START-UPS

Startups are young companies founded to develop a unique product or service, bring it to
market and make it irresistible and irreplaceable for customers. Rooted in innovation, a startup
aims to remedy deficiencies of existing products or create entirely new categories of goods and
services, disrupting entrenched ways of thinking and doing business for entire industries (17).

Startups apply principles learned from manufacturing and supply chain management
to bring together the principles of customer development and agile methodologies seeking to
reduce waste by mitigating risk through short and frequent actions, tests and fixes (10).

2.3 MOBILE DEVELOPMENT

When a developer says they are a mobile app programmer, most of the time they are
referring to that front-end part (5).

Depending on the size of the team producing the app, there can be many different people
involved in the front-end mobile app design and development (41). The size of the team can
range from a single developer who does everything associated with building the app, to dozens,
hundreds, and more people with specialized skills (5). The Figure 2 shows the mobile developer
workflow commonly seen in corporations.

Figure 2 – Mobile app development process.

2.3.1 Dominant market

There are two dominant platforms in the modern smartphone market. One is Apple iOS
platform. The iOS platform is the operating system that powers Apple’s popular iPhone line of
smartphones. The second is Google’s Android. The Android OS is used not only by Google
devices, but also by many other to build their own smartphones and other smart devices (5).

While there are some similarities between these two platforms when building apps, iOS
development versus Android development involves using different software development kits
(SDKs) and a different development tool chain (20).

17

2.4 BACK-END DEVELOPMENT

For most applications, service developers are responsible for creating and managing
back-ends for their applications. The mobile developer may not be an expert or even particularly
skilled at building and running a back-end infrastructure (5).

Developers can take advantage of a cloud service provider – a back-end as a service
(BaaS) provider – that handles all the heavy lifting and back-end management grunt work, so
developers can focus only on features and functionality that are built into their applications,
without worrying about scalability, security and reliability (5).

2.4.1 APIs

APIs (Application Programming Interfaces) offer a simple way for connecting to, inte-
grating with, and extending a software system, in this case, mobile applications. More precisely,
APIs are used for building distributed software systems, whose components are loosely coupled.
The APIs studied in this project are web-APIs, which deliver data resources via a web technology
stack. Typical applications using APIs are mobile apps, cloud apps, web applications, or smart
devices (9).

The advantages of using APIs are that they are simple, clean, and approachable. They
provide a reusable interface that different applications can connect to easily. However, APIs do
not offer a user interface, they are usually not visible on the surface, and typically, no end-user
will directly interact with them. Instead, APIs operate under the hood and are only directly
called by other applications. APIs are used for machine-to-machine communication and for the
integration of two or more software systems (9). The Figure 3 shows a sample of how many
kinds of clients an API can serve to respect the particularities of each one.

Figure 3 – API client connections.

18

2.4.1.1 REST

REST (REpresentational State Transfer) is an architectural style that defines the set of
rules to be used for creating web services. Web services that follow the REST architectural style
are known as RESTful web services (19).

In 2000, Roy Fielding, one of the key contributors to HTTP and URI, codified
the architecture of theWeb in his doctoral thesis titled “Architectural Styles and
the Design of Network-Based Software Architectures.” In this thesis, he intro-
duced an architecture style known as Representational State Transfer (REST).
This style, in abstract terms, describes the foundation of the World Wide Web.
The technologies that make up this foundation include the Hypertext Transfer
Protocol (HTTP), Uniform Resource Identifier (URI), markup languages such
as HTML and XML, and web-friendly formats such as JSON (2).

REST is designed to make optimal use of an HTTP-based infrastructure and the HTTP
protocol (9). There are six architectural constraints that define the REST style, as follows:

Uniform Interface. The interface must uniquely identify each resource involved in the interac-
tion between the client and the server (36).

Stateless. The server never stores any application state. In a stateless application, the server
considers each client request in isolation and in terms of the current resource state. If the client
wants any application state to be taken into consideration, the client must submit it as part of
the request. This includes things like authentication credentials, which are submitted with every
request (38).

Cacheable. The cacheable constraint requires that a response should implicitly or explicitly
label itself as cacheable or non-cacheable. If the response is cacheable, the client application
gets the right to reuse the response data later for equivalent requests and a specified period (36).

Client-Server. The client-server design pattern enforces the separation of concerns, which helps
the client and the server components evolve independently. By separating the user interface
concerns (client) from the data storage concerns (server), we improve the portability of the user
interface acrossmultiple platforms and improve scalability by simplifying the server components
(36).

Layered System. The layered system style allows an architecture to be composed of hierarchical
layers by constraining component behavior. For example, in a layered system, each component
cannot see beyond the immediate layer they are interacting with (36). The Figure 4 shows the
workflow between clients that request some resource to the server using the HTTP format, which
validates the requested format, processes, and responds to the resources required in one of the
defined formats.

19

Figure 4 – Rest APIs workflow.

2.4.1.2 GraphQL

A GraphQL API is also another option for developers as it makes it easier to work with
back-end data in a mobile app. GraphQL supports queries through a single API endpoint and a
data schema that can be used to easily create and extend data models used in the application (5).

GraphQL is a data fetching language that allows clients to declaratively describe their
data requirements in a JSON-like format. In this respect, it is comparable to SQL. Furthermore,
GraphQL is database agnostic. Its design allows one to deal with any kind of database (9).

GraphQL could be implemented once with its high flexibility and dynamic nature,
allowing the clients to pick and choose the data without having to have to worry if an endpoint
exists or not for the specific query (25).

2.4.2 Business rules

Business rules, sometimes referred to as business logic or application logic, are what
govern how an app should perform and what validations to apply.

Client-side validations are useful to provide immediate feedback to the user, whichmakes
for a better user experience. For instance, when writing a tweet, it is possible to instantly see
if it went over the 140-character limit or not. However, client-side validations are not enough
on their own since they are easily bypassed. Browsers (and mobile apps for that matter) can be
hacked to bypass certain restrictions put in by the application’s developers. Browsers allow one
to inspect and modify the HTML and JavaScript quite easily, so it is not a good practice to rely
only on front-end validations (15).

20

2.5 MARKET ANALYSIS

2.5.1 Configure.IT

Configure.it is a fully web platform for the creation of APIs and the generation of front-
end screens in native code for both platform in Java and Swift languages. The corporation
started 10 years ago, with its software contemplating several features, which seems to be very
complete and robust (13). The figure 5 shows the initial creation of a new screen which can
be later exported to native android/iOS native language and the figure 6 shows the interface for
modeling new tables, treated as models, similar to the proposal of this work (12).

Figure 5 – Designing a new screen in Configure.IT.

Figure 6 – Modeling a new table in Configure.IT.

In general terms, the platform seems to be quite complete in terms of what it proposes
to do, not only configuring the back-end to be consumed, but also generating code for native
web and mobile applications, which is an aspect that differs from the proposal of this work, as
defined in the methodology section.

2.5.2 Xano

Xano is another fully web platform as the Configure.IT, but without generation of native
code. The platform worry mainly about the back-end functionalities. It was originally created
to help to accelerate the speed of back-end development while keeping the team small (13). The

21

Figure 7 presents the interface for the configuration of endpoints created on the platform (44)
and the figure 8 shows the interface for listing tables created into the platform (44).

Figure 7 – Showing a endpoint created in Xano.

Figure 8 – Showing the table characteristics in Xano.

2.5.3 Backendless

Backendless is a no-code application development platform designed to streamline and
accelerate the mobile application development process. The platform consists of a no-code
UI builder, mobile back-end-as-a-service (mBaaS) product, API management solution and a
hosting environment (7). The Figure 9 shows the interface for listing tables created into the
platform (8) and the Figure 10 shows the interface for listing data generated through the data
models into the platform (8).

2.5.4 Parse.com

Parse.com is the most used open-source framework to develop application back-ends. It
helps developers to accelerate app development and reduces the total amount of effort required
to build an app. A large community of engaged developers supports the platform which has
been evolving since 2016 (33).

22

Figure 9 – Relation between models in Backendless.

Figure 10 – Listing data of modeled tables in Backendless.

2.5.5 Back4app

Back4app is based on Parse.com with many improvements in functionalities as well as
developer experience in it. The platform offers features with low-code like in Push Notifications
and many kinds of integration like GraphQL, REST APIs, and Cross-Platform SDKs including
libraries for native apps. The Figure 11 shows the modeling a new class attribute into the
platform (6).

23

Figure 11 – Modeling a class attribute on Back4app

2.5.6 Appmachine.com

Appmachine.com is a platform very similar to the Configure.It about the functionalities,
with methods to create the applications inside it and the final result generating native code
for mobile applications. It uses the concept of LEGO assembled with ready-to-use functional
blocks. The Figure 12 shows the creation of a screen layout into the platform (3).

Figure 12 – Designing layout for a screen

24

2.6 CROSS MARKET FUNCTIONALITIES

TheTable 1 presents the crossing ofmarket featureswith the proposed project considering
only core functionalities.

Platform features PROTOTYPE Configure.It Xano Backendless Parse Back4app AppMachine
WEB Platform to manage products x x x x x x x
Configure APIs x x x x x x x
Integration for each product x x x x x x x
Configure models and attributes x x x x x x x
Relationship between models x x x x x x x
Definition of business rules x x x x x x x
Manipulate data records x x x x x x x
Integration by JSON x x x x x x x
SDK for integration in JS x x
Sample in React-Native x
Generation of frontend x x
Generation of backend x x x x

Table 1 – Crossing concurrent features with our purpose

2.7 RELATED WORK

Several efforts have been made to bring together MDE and Web Engineering. This field
is usually referred to as Model Driven Web Engineering (MDWE) and proposes the use of
models and model transformations for the specification and semiautomatic generation of Web
applications (16).

Some of these works provide support for the generation of Web services as well, but
support for generation of RESTful APIs is very limited (37). Moreover, these approaches
require the designer to specifically model the API itself using some kind of tool-specific DSL
from which then the API is (partially) generated. Instead, our approach is able to generate a
complete RESTful API implementation from a plain data model (16).

2.8 CHAPTER’S FINAL REMARKS

This chapter presented some important concepts which were useful to proceed with the
development of this project. In addition, some related tools were presented, which were used to
help in the understanding of the objectives of this work and in studying different features which
could be implemented in the proposed prototype.

25

3 METHODOLOGY

The Minimum Viable Product (MVP) proposed consists of a web platform that make it
possible to configure APIs to be integrated into mobile applications with limited features. Some
of them can be changed or tweaked during the development process, however, the main concepts
should be preserved, i.e., the platform should not generate specific tables as in traditional
back-ends development, and it is out of the scope of this project the generation of front-end
code.

The features and requirements for the first presentable MVP have enough functionalities
to represent what this work proposes. The main features expected for the practical project are
listed below:

– Data models and their attributes

– Integration token for each API

– CRUD of registers belonging to models

To be able to produce the proposed project, there are several steps to be followed, as described
next:

Review database concepts. Consists of analyzing conceptual documents to further explore
unexplored features of relational and non-relational database architectures.

List MVP functional requirements. Consists of producing a list of requirements for the project,
identifying essential functional requirements for the delivery of the minimum viable product for
what the platform proposes.

List and test candidate technologies. Study different technologies to choose the appropriate
ones for this project, as well as evaluate the required and available resources, experimenting
each of them.

Define the road map. Consist of defining the script board of stories that have high priority
according to the functional requirements. In this step, inter-dependencies of stories should be
identified, allowing changes to the design of the proposed MVP.

Organization of tasks. This step consists of splitting tasks into small parts as possible applying
the Agile concept.

Implement the MVP. The implementation of the proposed MVP according to the functional
requirements, and available resources, considering deadlines for the release.

Write the monography. Complement the text of this monography explaining the complete steps
performed to achieve the results of this project, as well the conclusions about the validation of
the MVP.

27

4 PROTOTYPE

This chapter describes the implementation of the prototype WEB platform, as well as
the mobile client sample, presenting the particularities of each them.

4.1 PROJECT

Was adopted the Agile methodology (1) to organize sprints with deadlines of an average
of 15 days. There were exceptions and unachieved goals in some of them. Frequent brainstorms
were carried out to restructure and adapt the initial idea to provide the minimum viable product
as soon as a short development period was noticed, which in our case was less than 2 months.

We used Google Docs (22) to organize the development sprints, containing basic dead-
lines and checklists of tasks to be completed by each date, with remote meetings held on Google
Meet (23). We used Diagrams.net (26) to create the entity-relationship diagram, which was
implemented later on this project.

4.2 PLATFORM DEVELOPMENT

This section refers to the administration interface for the APIs that was modeled, as well
as the backend development that supports and responds to all requests made by this platform, as
well as the client mobile applications that consumes the routes for manipulating model records.

4.2.1 Backend Development

We are referring to the database modeling activities, the technology selection for im-
plementation, the specifics of their configuration in a local development environment, and the
project’s organizational standards.

4.2.1.1 Technologies

Among the main technologies used in the backend project (but not limited to) are:

NodeJS
Node.js is an open-source and cross-platform JavaScript runtime environment. It is a popular
tool for almost any kind of project (32).

Typescript
TypeScript is a strongly typed programming language that builds on JavaScript, giving you
better tooling at any scale (31).

28

Sequelize
Sequelize is a modern TypeScript and Node.js ORM for Postgres, MySQL, MariaDB, SQLite
and SQL Server, and more. Featuring solid transaction support, relations, eager and lazy load-
ing, read replication and more. (39) (40).

PostgreSQL
PostgreSQL is a powerful, open source object-relational database system with over 30 years of
active development that has earned a strong reputation for reliability, feature robustness, and
performance (42)

4.2.1.2 Patterns

Figure 13 represents the organization of the files on the backend project. The following or-
ganization (design pattern) was chosen because it is widely used and accepted in the backend
community, as well as because it perfectly attend the project’s didactic requirements.

Figure 13 – Files tree of the Backend.

4.2.1.3 Middlewares, Routes and Controllers

As can be seen, routes, controllers, and middlewares were separated by consumer application,
with one structure handling requests from the WEB platform (called Admin) and another
handling requests from mobile applications (called Client).

29

4.2.1.3.1 Middleware

Functions that have access to the request object, the response object, and the next middleware
function in the application’s request-response cycle. Middleware can perform tasks such as
make changes to the request and the response objects, end the request-response cycle and call
the next middleware in the stack (28).

Each type of application (admin and clients) has its own authentication middleware and totally
different integration rules which will be seen in the security section.

4.2.1.3.2 Admin Routes

The following routes have been implemented to be consumed by the Admin WEB platform:

Unauthenticated
Unauthenticated routes, for example, do not need to send any access token information in the
request header.

POST /admin/login - For authentication
body: { login: string; password: string; }

POST /admin/users - To create users
body: { login: string; password: string; }

Authenticated
Authenticated routes, in the other hand, need to send the access token information in the request
header. The same will be used to verify not only whether the user has an active login session,
but also whether the user who made the request has access to what he expects to receive from
the request.

For manage APIs:

– GET /admin/apis - get all APIs
– GET /admin/apis/:uuid - get one API
– POST /admin/apis - create one API
– PUT /admin/apis/:uuid - update one API
– DELETE /admin/apis/:uuid - delete one API

For manage Models:

– GET /admin/models - get all Models
– GET /admin/models/:uuid - get one Model

30

– POST /admin/models - create one Model
– PUT /admin/models/:uuid - update one Model
– DELETE /admin/models/:uuid - delete one Model

For manage Attributes:

– GET /admin/attributes - get all Attributes
– GET /admin/attributes/:uuid - get one Attribute
– POST /admin/attributes - create one Attribute
– PUT /admin/attributes/:uuid - update one Attribute
– DELETE /admin/attributes/:uuid - delete one Attribute

4.2.1.3.3 Client Routes

Authenticated
For Registers:

– GET /client/apis/:uuidApi/models/:uuidModel/registers - get all registers of an
API and specific Model

– POST /client/apis/:uuidApi/models/:uuidModel/registers - create one register
of an API and specific Model

– GET /client/apis/:uuidApi/models/:uuidModel/registers/:uuidRegister - get one
register of an API and specific Model

– PUT /client/apis/:uuidApi/models/:uuidModel/registers/:uuidRegister - update
one register of an API and specific Model

– DELETE /client/apis/:uuidApi/models/:uuidModel/registers/:uuidRegister - delete
one register of an API and specific Model

The Figure 14 captures a snapshot from the Postman tool (34), which was used to test
the responses of routes created. In that case, the route body sent is of the POST route above
sending the value ’Augusto’ as value for the attribute ’Name’ for Sellers model.

31

Figure 14 – Request body of the creation register route.

4.2.1.4 Models and Hooks

4.2.1.4.1 Models

The following models were created to support the prototype:

User: Used to log in and link the modeling performed on the WEB platform
API: Used to be integrated through the proposed integration token.
Model: Used to group records and represent an entity.
Attribute: Used to represent attributes of entities.
Value: Used to store values belonging to a record

4.2.1.4.2 Hooks

Some hooks are executed, the most important of which are the generation of uuids before to the
creation of each record of the models and the generation of the APIs integration token.

4.2.1.5 Database Diagram

The Figure 15 captures a snapshot from the DBeaver tool (14), which was used to manage and
analyze the structures and data created to support the prototype.

32

Figure 15 – Snapshot of database created.

4.2.1.6 Authentication

Admin We use JWT generated in the login route to send login and password credentials after
signup in the Admin authentication middleware. After receiving it (the JWT), we include it in
all requests as part of the Authorization key header.

JSONWeb Token (JWT) is an open standard that defines a compact way for securely transmitting
information between parties as a JSON object. This information can be verified and trusted
because it is digitally signed. JWTs can be signed using a secret or a public/private key pair (4).

Client We double-check the request in the Client authentication middleware. If the identifier
(uuid) of the API in the URL exists, we check whether the integration token belongs to the
requested and found API.

4.2.1.7 Data security assurance

We made some arrangements to ensure the isolation and security of data belonging to a single
API, since we share the same schema as well as the same tables in our initial implementation.
For example, we avoid problems during the integration with an API from amobile client applica-
tion and possible attacks to get records belonging to other models already created in the database.

In addition to other verifications already mentioned, after we ensure that the token belongs to
the API requested (as mentioned in the section of Authentication), we check whether the model
coming as a parameter specified in the URL belongs to the requested API, and in the case of
record manipulation, we search if the record belongs to the requested model (that also comes in
the URL).

33

4.2.2 Frontend Development

The frontend project is a supplement to the prototype, and the main idea is to avoid modeling
the APIs through requests, as in Postman (34).

We can easily manage all of the modeling of APIs, Models, Attributes, and Relationships using
the WEB interface, in addition to consulting the integration documentation available in the
domain itself (as mentioned in the Documentation section).

4.2.2.1 Technologies

Among the main technologies used in the frontend project (but not limited to) are:

ReactJS React is a JavaScript library for building user interfaces, building encapsulated com-
ponents that manage their own state and then compose them to make complex UIs (30).

Formik Formik is the world’s most popular open source form library for React and React
Native. Its top goals are getting values in and out of form state, validation and error messages
and handling form submission (18).

Redux React Redux is the official React UI bindings layer for Redux. It lets React components
read data from a Redux store, and dispatch actions to the store to update state (35).

4.2.2.2 Patterns

The Figure 16 represents the organization of the files for the frontend project. A custom design
pattern was adopted, which I’ve been using recently in my personal projects, separating styles
from rendering and this one from the logical part isolated in ’services’.

4.2.2.3 Features

First and foremost, the platform’s registration and access functionalities for new users
were implemented. Following that, the functionality for creating, reading, editing, and delet-
ing tables that reference the APIs, Models, and Attributes was implemented. We chose some
screenshots to demonstrate and give an idea of how the top features were visually implemented.

Figure 17 shows the screenshot picked from the Login page. Both pages appear if the
user is not authenticated and are used to register new users and for authentication.

34

Figure 16 – Files tree of the Frontend.

Figure 17 – Screenshot of the Signin and Signup pages.

The Figure 18 shows the sidebar picked from the home page, after signed in. It comes
with APIs, Models, Attributes items to be clicked. All clicks result the listing of all data created
by the current user for that item.

Figure 18 – Screenshot of the Sidebar.

The Figure 19 shows the listing of APIs created by the current user. All features like
APIs, Models, and Attributes listings essentially follow the same layout, with a single difference
in the information presented. All of them allow you to view, edit, and delete individual records.

35

Figure 19 – Screenshot of the APIs listing.

The Figure 20 shows a detailed API with relevant information about its integration.
These information - UUID and the Integration token - are used by client mobile app in the
request or in the SDK library offered.

Figure 20 – Screenshot of an API detailed.

The Figure 21 shows an attribute being edited. We provide the fields Name to better
identify the field (not just by uuid), Type to refer to the type of the field, which at the time of
writing this document had the options of ’number’, ’boolean’ and ’text’, and finally Model to
indicate that this attribute belongs to specific model only within those created by the current
user.

36

Figure 21 – Screenshot of Attribute form.

4.2.2.4 Documentation

We provide a public documentation page linked to theWEB platform where it is possible
to consult how to make requests, as well as specifications of response protocols and possible
status returned, allowing direct access by API version by changing the value of the version
parameter assigned in the browser’s URL, such as /doc?version=1.

4.3 CASE STUDY: MOBILE CLIENT DEVELOPMENT

The mobile application validates the prototype’s applicability because it is primarily
intended to serve this market niche in order to facilitate the backend development process,
particularly for those professionals who spend the majority of their time or have their primary
focus on the development of mobile applications.

4.3.1 App Development

This mobile application aims to build a system that can carry out sales that are linked to
sellers and products. We did this by implementing the following models’ creation, editing, and
deletion screens in the WEB platform:

– Sales containing attributes such as Total, Seller (by relationship belongsTo), and
Products (by relationship hasMany);

– Seller attributes such as Name;
– Product attributes such as Description, Price, and Stock;

4.3.1.1 Technologies

Among the main technologies used in the mobile project (but not limited to) are:

37

React Native
React Native is an open-source UI software framework created by Meta Platforms, Inc. It is
used to develop applications for Android, Android TV, iOS, macOS, tvOS, Web, Windows and
UWP by enabling developers to use the React framework along with native platform capabilities
(29).

Formik
As already explained in this section 4.2.2.1

4.3.1.2 Patterns

The Figure 22 represents the organization of the files for the app client project. The same
pattern is used in the Admin project because they are both frontend projects that use similar
frameworks. The SDK used to make easy the integration is located in the project and is being
categorized as a ’service’ (crud-apis) that will be later locally imported rather than an external
importation, such as an NPM package (21).

Figure 22 – Files tree of the App.

4.3.1.3 SDK Implementation

The developed SDK consists of methods exported for use in JavaScript projects. Among
the functionalities are methods for getting APIs, Models, and Records and was built with object
orientation. This SDK also includes interfaces for use in Typescript projects. The Figure 23
shows a possible way suggested to map identifiers got from the WEB platform to use in the app
client integration.

38

This approach is very useful tomake easier themanipulation of data, because the platform
only provides to us the UUIDs as keys to manipulate everything we have created on the WEB
platform.

Figure 23 – Suggestion of configuration of uuids.

The Figure 24 shows the integration with the Finances API to get the registers of the
Sales model configured already using the previously prepared UUIDs mapping.

Figure 24 – Getting registers of the Sales model from Finances API.

The Figure 25 shows the implementation of the method exported that get all registers
from the model passed as a parameter. It is important to note that the API is first instantiated
and then used as a parameter for handling and listing records related to the desired model that
belongs to the instantiated API.

The Figure 26 shows the implementation of the Model class to be instantiated passing
the UUID identifier and the API that it belongs as well the public method to get registers of this
model using the fetchData method that is basically the customization of the fetch method of the
Javascript.

39

Figure 25 – Getting registers implementation method.

Figure 26 – Model class and the get registers public method.

4.3.1.4 Features

We were able to create, edit, and delete all models using the developed SDK in the client
App.

40

The Figure 27 shows the screen that list all sales created from the mobile app. Basically
is the data got from the exported SDK method getRegisters() passing the API of Finances
configured and the model of sales and in the Figure 28 shows sidebar to navigate between
screens of Sales, Products and Sellers as described in 4.3.1

Figure 27 – Listing Sales registers.

The Figure 29 shows the creation of a new register of a Product model in the mobile
client app through the form interface offering 3 fields for this model: a Description, a Price and
the quantity acquired for the stock called Stock.

Figure 28 – Sidebar of the app.

41

Figure 29 – Form for new product.

4.4 CHAPTER’S FINAL REMARKS

This chapter presented the implementation characteristics of the Backend project (a),
where we have the core features for the proposed prototype, as well as the Frontend project (b),
where we have an API configuration interface for mobile developers, and finally the implemen-
tation aspects of a hybrid language in a mobile project (c) using the integration SDK, which is
also implemented in this project. As realized and mentioned, we chose an idea of product in
the finances area for basically make sales, where we have the best scenario to demonstrate the
prototype’s functionalities for the purpose of prototype validation.

43

5 CONCLUSIONS

This project started with the study of the literature considering different tools used to
design APIs and through projects with possibilities of real-time data consumption in mobile
applications. The literature and the concepts were useful to reach the results expected in the
implementation.

The complexity of simplifying the structuring as much as possible so that we do not
attach responsibilities that could be delegated to the frontend is one of the main challenges faced
in developing the prototype.

We believe that this project has its space in the market and it is better suited for small
businesses, such as startups, at least for this prototype, because the scalability of the data
generated on the platform necessitates some treatment to avoid the problem of big data and
performance in the searches possible innumerable relationships as the project grows.

We were unable to implement and document certain features until the end of this docu-
ment, and these features are currently under development. Among them are the characteristics
of model relationships and the specific business rules for each attribute within a model.

We are aware that the state of the art of our prototype does not limit us to stopping
here and it is only a part of what we intend to do, but it can now become a marketable product
continuing with a pre-incubation process in the university program and/or even as an open source
project.

45

REFERENCES

1 AGILITY.What is Agile. [S.l.: s.n.]. Available from:
<https://agility.im/frequent-agile-question/what-is-agile/>.

2 ALLAMARAJU, Subbu. Restful web services cookbook: solutions for improving
scalability and simplicity. [S.l.]: " O’Reilly Media, Inc.", 2010.

3 APPMACHINE. Tour on AppMachine. [S.l.: s.n.]. Available from:
<https://www.appmachine.com/tour/>.

4 AUTH0. JWT. [S.l.: s.n.]. Available from: <https://jwt.io/introduction>.

5 AWS.What is Mobile Application Development? [S.l.: s.n.]. Available from:
<https://aws.amazon.com/pt/mobile/mobile-application-development/>.

6 BACK4APP.What Is Parse and Back4App. [S.l.: s.n.]. Available from:
<https://www.youtube.com/watch?v=vLfIDscFgQI&list=PL_lJrbgUtzded_
bF8KVl_puWZ-zDCLw7R&t=4s>.

7 BACKENDLESS. Backendless Corp. [S.l.: s.n.]. Available from:
<https://www.linkedin.com/company/backendless-corp/about/>.

8 . Creating Database Views. [S.l.: s.n.]. Available from: <https:
//youtu.be/tsj45-uVdkQ?list=PLWRqDbbT5r9DXiks8mZmp_84W6cRymoIc>.

9 BIEHL, Matthias. RESTful Api Design. [S.l.]: API-University Press, 2016. v. 3.

10 BUFFARDI, Kevin; ROBB, Colleen; RAHN, David. Tech startups: realistic software
engineering projects with interdisciplinary collaboration. Journal of Computing
Sciences in Colleges, Consortium for Computing Sciences in Colleges, v. 32, n. 4,
p. 93–98, 2017.

11 CNI. Terceirização de serviços e atividades é estratégica para a indústria no Brasil.
[S.l.: s.n.]. Available from:
<https://www.portaldaindustria.com.br/industria-de-a-
z/terceirizacao/#e-boa-para-o-brasil>.

12 CONFIGURE.IT. App Development, Re-invented with Configure.IT. [S.l.: s.n.].
Available from: <https://www.youtube.com/watch?v=78elHbbKC-8&t=91s>.

13 CONFIGURE.IT. Configure.It. [S.l.: s.n.]. Available from:
<https://www.configure.it/>.

14 DBEAVER. DBeaver. [S.l.: s.n.]. Available from: <https://dbeaver.io/>.

15 DESIGNING FOR SCALE. Business Rules Must Be Enforced by the API. [S.l.: s.n.].
Available from: <https://designingforscale.com/business-rules-must-be-
enforced-by-the-api/>.

https://agility.im/frequent-agile-question/what-is-agile/
https://www.appmachine.com/tour/
https://jwt.io/introduction
https://aws.amazon.com/pt/mobile/mobile-application-development/
https://www.youtube.com/watch?v=vLfIDscFgQI&list=PL_lJrbgUtzded_bF8KVl_puWZ-zDCLw7R&t=4s
https://www.youtube.com/watch?v=vLfIDscFgQI&list=PL_lJrbgUtzded_bF8KVl_puWZ-zDCLw7R&t=4s
https://www.linkedin.com/company/backendless-corp/about/
https://youtu.be/tsj45-uVdkQ?list=PLWRqDbbT5r9DXiks8mZmp_84W6cRymoIc
https://youtu.be/tsj45-uVdkQ?list=PLWRqDbbT5r9DXiks8mZmp_84W6cRymoIc
https://www.portaldaindustria.com.br/industria-de-a-z/terceirizacao/#e-boa-para-o-brasil
https://www.portaldaindustria.com.br/industria-de-a-z/terceirizacao/#e-boa-para-o-brasil
https://www.youtube.com/watch?v=78elHbbKC-8&t=91s
https://www.configure.it/
https://dbeaver.io/
https://designingforscale.com/business-rules-must-be-enforced-by-the-api/
https://designingforscale.com/business-rules-must-be-enforced-by-the-api/

46

16 ED-DOUIBI, Hamza et al. EMF-REST: generation of RESTful APIs from models. In:
PROCEEDINGS of the 31st Annual ACM Symposium on Applied Computing. [S.l.: s.n.],
2016. p. 1446–1453.

17 FORBES.What Is A Startup? [S.l.: s.n.]. Available from:
<https://www.forbes.com/advisor/investing/what-is-a-startup/>.

18 FORMIUM. Formik. [S.l.: s.n.]. Available from: <https://formik.org/>.

19 GEEKSFORGEEKS. REST API Architectural Constraints. [S.l.: s.n.]. Available from:
<https://www.geeksforgeeks.org/rest-api-architectural-constraints/>.

20 GIGS. GIGS: A Day in the Life of: A MOBILE APP DEVELOPER. [S.l.: s.n.].
Available from: <https://www.youtube.com/watch?v=ulSxrbaj5rs>.

21 GITHUB, INC. NPM packages. [S.l.: s.n.]. Available from:
<https://www.npmjs.com/>.

22 GOOGLE. Google Docs. [S.l.: s.n.]. Available from:
<https://workspace.google.com/products/docs/>.

23 . Google Meet. [S.l.: s.n.]. Available from:
<https://workspace.google.com/products/meet/>.

24 HEIKKINEN, Eetu. Full Stack Development, 2022.

25 HELGASON, Arnar Freyr. Performance analysis of Web Services : Comparison
between RESTful & GraphQL web services. [S.l.: s.n.], 2017. p. 66.

26 JGRAPH. Diagrams.net. [S.l.: s.n.]. Available from: <https://www.diagrams.net/>.

27 LINKEDIN. Reasons to hire a Fullstack Developer in a Startup Environment.
[S.l.: s.n.]. Available from: <https://www.linkedin.com/pulse/reasons-hire-
fullstack-developer-startup-environment-shane-sale/>.

28 MEDIUM. How Node JS Middleware works? [S.l.: s.n.]. Available from:
<https://selvaganesh93.medium.com/how-node-js-middleware-works-
d8e02a936113>.

29 META PLATFORMS, INC. React Native. [S.l.: s.n.]. Available from:
<https://reactnative.dev/>.

30 . ReactJS. [S.l.: s.n.]. Available from: <https://reactjs.org/>.

31 MICROSOFT. Typescript. [S.l.: s.n.]. Available from:
<https://www.typescriptlang.org/>.

32 OPENJS FOUNDATION. NodeJS. [S.l.: s.n.]. Available from:
<https://nodejs.dev/learn>.

33 PARSE.COM. Parse.com. [S.l.: s.n.]. Available from:
<http://parseplatform.org/>.

https://www.forbes.com/advisor/investing/what-is-a-startup/
https://formik.org/
https://www.geeksforgeeks.org/rest-api-architectural-constraints/
https://www.youtube.com/watch?v=ulSxrbaj5rs
https://www.npmjs.com/
https://workspace.google.com/products/docs/
https://workspace.google.com/products/meet/
https://www.diagrams.net/
https://www.linkedin.com/pulse/reasons-hire-fullstack-developer-startup-environment-shane-sale/
https://www.linkedin.com/pulse/reasons-hire-fullstack-developer-startup-environment-shane-sale/
https://selvaganesh93.medium.com/how-node-js-middleware-works-d8e02a936113
https://selvaganesh93.medium.com/how-node-js-middleware-works-d8e02a936113
https://reactnative.dev/
https://reactjs.org/
https://www.typescriptlang.org/
https://nodejs.dev/learn
http://parseplatform.org/

47

34 POSTMAN, INC. Postman. [S.l.: s.n.]. Available from:
<https://www.postman.com/>.

35 REDUX. Redux. [S.l.: s.n.]. Available from: <https://react-redux.js.org>.

36 RESTFULAPI.What is REST. [S.l.: s.n.]. Available from:
<https://restfulapi.net/>.

37 RIVERO, José Matıas et al. MockAPI: an agile approach supporting API-first web
application development. In: SPRINGER. INTERNATIONAL Conference on Web
Engineering. [S.l.: s.n.], 2013. p. 7–21.

38 RODRIGUEZ, Alex. Restful web services: The basics. IBM developerWorks, v. 33,
p. 18, 2008.

39 SEQUELIZE. sequelize. [S.l.: s.n.]. Available from: <https://sequelize.org>.

40 . sequelize-ts. [S.l.: s.n.]. Available from:
<https://www.npmjs.com/package/sequelize-typescript>.

41 SIXT CARRIERE. A day as an iOS Developer at SIXT. [S.l.: s.n.]. Available from:
<https://www.youtube.com/watch?v=aLccZMTLsmQ>.

42 THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. Postgres. [S.l.: s.n.].
Available from: <https://www.postgresql.org/>.

43 WEINER, Andrew; REMER, Rory; REMER, Pam. Career Plateauing: Implications for
Career Development Specialists. Journal of Career Development, v. 19, n. 1, p. 37–48,
1992. Available from: <https://doi.org/10.1177/089484539201900104>.

44 XANO.What is Xano? [S.l.: s.n.]. Available from:
<https://www.youtube.com/watch?v=ng0GiVYOFnc>.

https://www.postman.com/
https://react-redux.js.org
https://restfulapi.net/
https://sequelize.org
https://www.npmjs.com/package/sequelize-typescript
https://www.youtube.com/watch?v=aLccZMTLsmQ
https://www.postgresql.org/
https://doi.org/10.1177/089484539201900104
https://www.youtube.com/watch?v=ng0GiVYOFnc

	Folha de rosto
	Abstract
	Introduction
	Research problem
	Research hypothesis
	Objectives
	General objectives
	Specific objectives

	Justification
	Structure

	Background reading
	Full-stack
	Start-ups
	Mobile Development
	Dominant market

	Back-end development
	APIs
	REST
	GraphQL

	Business rules

	Market analysis
	Configure.IT
	Xano
	Backendless
	Parse.com
	Back4app
	Appmachine.com

	Cross market functionalities
	Related Work
	Chapter's Final Remarks

	Methodology
	Prototype
	Project
	Platform Development
	Backend Development
	Technologies
	Patterns
	Middlewares, Routes and Controllers
	Middleware
	Admin Routes
	Client Routes

	Models and Hooks
	Models
	Hooks

	Database Diagram
	Authentication
	Data security assurance

	Frontend Development
	Technologies
	Patterns
	Features
	Documentation

	Case Study: Mobile Client Development
	App Development
	Technologies
	Patterns
	SDK Implementation
	Features

	Chapter's Final Remarks

	Conclusions
	References

