

Random Elixir Code Generation Applied to Compiler Testing
Bernardo Beltrame Facchi

bernardobf[at]outlook.com.br

Universidade Federal da Fronteira Sul

Chapecó, SC, Brazil

Andrei de Almeida Sampaio Braga

andrei.braga[at]uffs.edu.br

Universidade Federal da Fronteira Sul

Chapecó, SC, Brazil

André Rauber Du Bois

dubois[at]inf.ufpel.edu.br

Universidade Federal de Pelotas

Pelotas, RS, Brazil

Samuel da Silva Feitosa

samuel.feitosa[at]uffs.edu.br

Universidade Federal da Fronteira Sul

Chapecó, SC, Brazil

ABSTRACT
Developers expect compilers to be correct. Unfortunately, these

tools are not entirely bug-free. A failure introduced by the compiler

could compromise a critical system and consequently have cata-

strophic consequences, specially in applications of great complexity,

affecting both end users and developers. Such failures can lead to

significant financial losses, security vulnerabilities, and a loss of

trust in the software’s reliability. Therefore, testing and validating

all the compiler functionalities to assure its correctness is essential

given their importance in software development. In light of the

given context, this paper describes a random code generation tool

using Haskell that generates well-typed Elixir code by adhering

to a specified syntax and typing rules, which serves as input for

property-based tests, striving to contribute to the overall quality

and dependability of software systems built using Elixir.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for

Your Paper.

KEYWORDS
Code generation, Elixir Compiler, Property-based Testing

ACM Reference Format:
Bernardo Beltrame Facchi, Andrei de Almeida Sampaio Braga, André Rauber

Du Bois, and Samuel da Silva Feitosa. 2018. Random Elixir Code Generation

Applied to Compiler Testing. In Proceedings of Brazilian Symposium on
Programming Languages (SBLP ’24). ACM, New York, NY, USA, 8 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The Elixir programming language has rapidly emerged as a power-

ful tool in the landscape of modern software development, known

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SBLP ’24, September 30 – October 04, 2024, Curitiba, PR
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

for its scalability, concurrency, and functional programming ca-

pabilities based on the lambda calculus [2]. Its syntax, influenced

by Ruby, offers a user-friendly experience while maintaining the

efficiency and reliability needed for complex, real-time applications.

This combination of usability and performance has led to its in-

creasing adoption in various domains, from web development to

embedded systems.

With the rise of popularity of the Elixir programming language

and its adoption in many major projects, it is important to have

mechanisms to ensure that the compiler works correctly. Assuring

that themachine language code runs accurately to what was written

by the programmer is essential to software development and for

the language’s usage since programmers do not want failures to be

introduced in their software during the compilation process.

A common approach to test compilers is to write and execute

case tests manually. However, due to the complexity of modern

compilers, and the time-consuming task of crafting test cases, such

an approach is often not efficient enough to assure the correctness

of the compiler comprehensively, since this method can easily over-

look edge cases and rare scenarios that could cause the compiler

to behave unexpectedly. Random code generation addresses this

limitation [11] by automating the creation of diverse and extensive

test cases. The development of a tool to exhaustively generate test

cases allows us to cover a larger subset of the language and test

various functionalities of a compiler in a much more efficient and

systematic way.

However, developing a random code generation tool presents

a significant challenge since several constraints, imposed by the

language’s compiler, must be adhered to in order to generate valid

and useful test cases, such as the syntactical correctness and type

system requirements. These restrictions guarantee that the gen-

erated code will be valid, so it can then be used as input to the

compiler and allow for the application of property-based testing,

exhaustively testing the generated code in an automated manner.

We investigate random code generation using a bottom-up, goal-

oriented approach [1, 6, 11] to generate randomized programs. We

implement a random code generator using Haskell, a language

well-suited for code verification due to its strong static type system

and emphasis on pure functions, capable of generating type-correct

expressions based on a subset from the Elixir language. To measure

the quality of our generator, we check the code coverage to verify

if our generator covers a wide range of code scenarios and use

property-based testing with the QuickCheck library [7] to check if

the generated code is well-typed.

SBLP ’24, September 30 – October 04, 2024, Curitiba, PR Facchi et al.

The remainder of this text is as follows: in Section 2, we describe,

shortly the Elixir programming language along with its syntax and

typing rules. The steps to generate Elixir programs are described

in Section 3. Section 4 presents our prototype implementation and

describes the analysis of the generated code. Related works are in

Section 5, and lastly, Section 6 provides a conclusion and sugges-

tions for future work.

2 ELIXIR LANGUAGE
The Elixir functional programming language, created by José Valim,

had its first version released to the public in 2014, and runs on top

of the Erlang Virtual Machine (BEAM). Elixir offers productive pro-

gramming for secure and maintainable distributed applications by

leveraging the virtual machine resources on which it is based [12].

Elixir is functional, process-oriented, scalable, concurrent, and fault-

tolerant [5].

Functional programming, which Elixir is based upon, promotes a

programming style that helps programmers to write short, concise,

and maintainable code.

Elixir is a process-oriented language where code runs inside

lightweight threads (called processes) that are independent of one

another and exchange information amongst themselves via mes-

sages. Due to their lightweight nature, it is possible to run hundreds

of thousands of processes concurrently in the same machine (verti-

cal scaling) and also on different connected machines (horizontal

scaling).

Elixir can react to possible failures through supervisors, who

describe how to restart specific system parts, returning to a known

initial state guaranteed to work. Therefore, Elixir is an excellent

choice for event-driven systems and robust architectures.

The subsequent sections provide an explanation of the Elixir

syntax considered for this paper and its corresponding type system.

2.1 Syntax
Most Elixir constructors are syntactic sugar based on function

application and pattern matching. Types in Elixir are polymorphic,

set-theoretic, and recursively defined [2]. The syntax this project

was based upon is described in Figure 1.

The base types are defined by integers, atoms, functions, and

tuples. The top type (1), the type of all values, is defined as 1 = int

∨ atom ∨ 1𝑓 𝑢𝑛 ∨ 1𝑡𝑢𝑝 , and the bottom type O as O = ¬1, which
correspond to Elixir’s term() and none() types, respectively.

Types contain base types, constants (representing singletons),

type variables, the constructors 𝑡 → 𝑡 (𝑡 denotes the sequence

𝑡1 . . . 𝑡𝑛) and { 𝑡 } for functions and tuples, respectively, and two

connectives, union (∨) and negation (¬).
Expressions have constants, variables, lambda functions, func-

tion applications, tuples (and their projections), let, and case. The let

expression expresses that the result of one expression applied to an-

other will be assigned to one variable. The case expression expresses

code branching from an expression through pattern matching.

Patterns can be variables, constants, or a tuple of patterns. Guards

are boolean tests composed of guards and selectors. Selectors are

the building blocks of guards, which can be a variable, a singleton,

an element, or a tuple size.

Syntax

𝑏 ::= Base types

int | atom | 1𝑓 𝑢𝑛 | 1𝑡𝑢𝑝
𝑡, 𝑠 ::= Types

𝑏 | 𝑐 | 𝛼 | 𝑡 → 𝑡 | {𝑡} | 𝑡 ∨ 𝑡 | ¬𝑡
𝑒, 𝑓 ::= Expressions

𝑐 | 𝑥 | 𝜆(𝑥 .𝑒) | 𝑓 (𝑒) | {𝑒} | elem(𝑒, 𝑒) | 𝑒 + 𝑒

let 𝑥 : 𝑡 = 𝑒 in 𝑒 | case 𝑒 do 𝑝𝑔 → 𝑒

𝑝 ::= Patterns

𝑥 | _ | 𝑐 | {𝑝}
𝑔 ::= Guards

𝑔 and 𝑔 | 𝑔 or 𝑔 | not 𝑔 | is_integer(𝑑)
is_atom(𝑑) | is_tuple(𝑑) | is_function(𝑑,𝑑)
𝑑 == 𝑑 | 𝑑 ≠ 𝑑 | 𝑑 < 𝑑 | 𝑑 ≤ 𝑑

𝑑 ::= Selectors

𝑐 | 𝑥 | elem(𝑑, 𝑑) | tuple_size(𝑑)

Figure 1: Syntax of Elixir [2] considered for the generation
process.

2.2 Type System
Both statically and dynamically typed programming languages

have a type system. Its purpose is to define how the language

constructions can be used besides its grammar. This process is

carried out through a set of rules. Figure 2 presents a formal subset

of the Elixir type system [2].

𝑐 : 𝑐
(cst)

Γ ⊣ 𝑥 : 𝑡

𝑥 : 𝑡
(var)

𝑒1 : int 𝑒2 : int

𝑒1 + 𝑒2 : int
(+)

𝑥 : 𝑠 ⊢ 𝑒 : 𝑡
𝜆(𝑥 .𝑒) : 𝑠 → 𝑡

(𝜆)

𝑓 : 𝑠 → 𝑡 𝑒 : 𝑠

𝑓 (𝑒) : 𝑡
(app)

𝑒 : 𝑡

{𝑒} : {𝑡}
(tuple)

𝑓 : int 𝑒 : {𝑡0, . . . , 𝑡𝑛}
𝜋𝑓 (𝑒) : 𝑡𝑖

(proj)

𝑓 : 𝑠 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡
let 𝑥 : 𝑠 = 𝑓 in 𝑒 : 𝑡

(let)

𝑒1 : 𝑠 Γ, vars(𝑝, 𝑠) ⊢ 𝑒2 : 𝑡
Γ ⊢ case 𝑒1 do 𝑝𝑔 → 𝑒2 : 𝑡

(case)

Figure 2: Type system considered for expressions.

Each rule determines how the type of a specific term should be

verified by the compiler. A term is valid if its premises are in accor-

dance with the type system restrictions. Considering the approach

of generating code by following each rule, we guarantee that the

randomly generated code will be correct, allowing the code to be

compiled and executed.

The type system shown in Figure 2 presents the typing rules

we consider during the development of the random generator. The

definition of each rule is described as follows:

Random Elixir Code Generation Applied to Compiler Testing SBLP ’24, September 30 – October 04, 2024, Curitiba, PR

Constants. The rule (cst) simply defines a constant and has no

premises.

Variables. Rule (var) specifies that a variable 𝑥 will be evaluated

to a type 𝑡 if a variable 𝑥 of type 𝑡 exists in the Γ context.

Additions. Rule (+) specifies that the sum of two expressions

will be of type int if these two expressions are of type int.

Lambdas. Rule (𝜆) specifies that a lambda expression with pa-

rameters 𝑥 and an expression 𝑒 has a type 𝑠 → 𝑡 if expression 𝑒 has

a type 𝑡 considering a context extended with 𝑥 of type 𝑠 .

Applications. The rule (app) defines that the invocation of a

function 𝑓 with parameters 𝑒 will be of type 𝑡 if 𝑓 is a function of

type 𝑠 → 𝑡 , and parameters 𝑒 are of type 𝑠 .

Tuples. Rule (tuple) specifies that a tuple 𝑒 will be evaluated to
tuple 𝑡 if the sequence of expressions 𝑒 has the sequence of types 𝑡 .

Projections. The rule (proj) defines that given an index 𝑓 and an
expression 𝑒 → { 𝑡 }, the evaluated type will be the type found in the

tuple of the given index. The projection is not a type-safe expression,

since the projection index can be the result of an expression, the

type system cannot statically guarantee that the projection will be

limited to the tuple’s size, which may raise an index out range.

Bindings. The rule (let) defines that a let expression is of type

𝑡 when the expression 𝑓 is of type 𝑠 and expression 𝑒 is of type 𝑡

considering an extended context with variable 𝑥 of type 𝑡 .

Alternatives. The rule (case) defines that a case expression is

of type 𝑡 given that expression 𝑒1 is of a valid type 𝑠 , and all expres-

sions of 𝑒2 have a type 𝑡 , considering that a context of variables is

extended with variables and types extracted from the pattern 𝑝1.

Considering these guidelines, we propose a method to generate

well-typed Elixir programs, the specifics of which are elaborated in

the following section.

3 CODE GENERATION
The process of generating random, well-typed Elixir code is divided

into three key steps: (i) randomly generating a valid Elixir type, (ii)
randomly generating an expression in an abstract representation,

and (iii) compiling the generated expression into Elixir concrete

syntax. On this basis, the generated type is used as input to the

expression generation process, which uses the typing rules as con-

straints to create valid expressions based on a bottom-up approach,

where to satisfy the conclusion of a rule, it is necessary to respect

their premises. This process gives rise to an expression generation

judgment, as follows.

Definition 1. Expression generation judgment. Γ;𝑇
exp
===⇒ 𝑒

Given a Γ context containing the free variables, and a type 𝑇 , a
new expression e is generated by selecting a syntactical constructor at
random respecting the typing rules.

The generation technique we use is derived by interpreting the

typing rules from Figure 2 in reverse order. In essence, to produce

1
For simplicity, we refer to the function vars which is responsible for extracting each

variable with its respective type from a given pattern.

an expression that appears as the result of a rule, one must initially

create expressions that form the rule’s premises and then merge

them. Consequently, the process of generating a term may recur-

sively need the creation of sub-goals. Employing the typing rules

guarantees that the generated terms are correctly typed.

To convert the generated expressions to Elixir code, we had to

adhere to the Elixir’s syntax, translating the generated AST into

the concrete syntax. Therefore, we implemented a show instance in

Haskell for each data type. The show instance allows us to dictate

how each data type should render as a string. Thus, by using string

manipulation to adhere to Elixir’s syntax, we ensure that the gen-

erated code is syntactically correct and compatible with the Elixir

compiler, allowing the output from our generator to be compiled

and executed in an Elixir environment.

3.1 Souce code
The source code presented in this article was developed in Haskell

(version 8.6.5), using the QuickCheck library (version 2.12.6.1) for

property-based testing. Throughout the text, only excerpts of the

code that are important for understanding the generation mech-

anism are presented, omitting parts that may distract the reader

from the high-level implementation understanding. All the code

produced for this article can be found in the GitHub repository of

the work
2
.

The subsections that follow present in detail how types and

expressions are randomly generated considering the language con-

straints, i.e., the syntax and typing rules.

3.2 Type Generation
The first step was to define all the valid Elixir types according to

the language syntax in Haskell using Algebraic Data Type (ADT)

constructors. We implemented the primitive types (int and atom),

tuple type and function type, as described in the next piece of code.

data PrimType = IntType
| AtomType

data Type = PType PrimType
| FunType [Type] Type
| TupleType [Type]

The process of generating types is entirely based on syntax,

which implies that it’s unrestricted and any valid type can be gener-

ated at random. We achieve this by using the frequency function

from the QuickCheck library, which allows the use of weights to

define the frequency in which each function will be selected at

random. The type generation follows a recursive process. If the

selected type is final, i.e., a primitive type, the return is immedi-

ate. Otherwise, we recursively continue the generation. To avoid

non-termination due to the recursive approach, we decrement a

fuel (the 𝑠 parameter) on each recursive call so that when it reaches

zero, only terminal types can be created, forcing the generation to

stop. The function presented next shows how types are generated

at random.

genType :: Int -> Gen Type
genType s | s > 0 = frequency [

2
https://anonymous.4open.science/r/Elixir-Generator-840F

SBLP ’24, September 30 – October 04, 2024, Curitiba, PR Facchi et al.

(2, genPrimType),
(1, genTupleType s'),
(1, genFunType s')
]

| otherwise = genPrimType
where s' = s `div` 2

Note that, if the parameter 𝑠 is greater than zero, all the types

can be generated, otherwise the generation function restricts the

process to generate only primitive types.

3.3 Expression Generation
The expression generation process is similar to the type generation

process. The difference is that it must be guided by the typing

rules presented in Figure 2 to generate type-correct expressions.

The expressions we defined using Haskell ADT constructors are

presented next.

data Expr = Var String
| Tuple [Expr]
| TupleElem Expr Expr
| Case Expr [Alt]
| Plus Expr Expr
| App Expr [Expr]
| Lambda [(String, Type)] Expr
| Literal Literal
| Let String Expr Expr

data Alt = CaseAlt (Maybe Pattern) (Maybe Guard) Expr

The objective of the expression generation is to create a well-

typed expression at random that should be evaluated to a specific

type. To guarantee that the expression is well-typed, we respect

the restrictions imposed by the typing rules during the generation

process. For this reason, to generate an expression of a specific type,

only a subset of the typing rules can be considered. For example, the

tuple rule can only be used when the expected type is a tuple, the

lambda rule can only be used when the expected type is a function

type, the arithmetic addition rule can only by used when an integer

type is expected, and so on.

As shown by the process generation judgment, for the generation

of each expression, it is expected the use of two inputs: (1) a context

(initially empty) containing variables that might be used during the

generation of sub-expressions
3
that is fed during the generation

process with new variables when they are created; and (2) a type,

that defines what the expression should be evaluated to. Note that

during the generation of sub-expressions their return type might

not be the same as the return type of the initial expression.

The generation process uses a bottom-up approach, where to

generate an expression, we must satisfy the expression typing rule’s

premises, which might require the generation of sub-expressions.

Hence, the generation method explored in this paper is recursively

defined and guided by the type system. This approach guarantees

that the expressions created are well-typed.

To understand how the typing rules are used to guarantee the

generation of type-correct expressions, let’s consider the following

example.

3
A sub-expression is part of an expression that is by itself an expression.

Example 1. Using the expression generation judgment to create a

new expression of type int. Γ; 𝑖𝑛𝑡
𝑒𝑥𝑝
====⇒ 𝑒

A typing rule can be formatted using the question mark ? as a
placeholder for that expression, representing the first generation step,
as follows:

Γ ⊢ ? : 𝑖𝑛𝑡 (1)

Suppose the rule for arithmetic addition (+) was selected at random.
Then, the second generation step would look like:

Γ ⊢ ?1 : 𝑖𝑛𝑡 Γ ⊢ ?2 : 𝑖𝑛𝑡
Γ ⊢ ?1 + ?2 : 𝑖𝑛𝑡

(+) (2)

The question marks (?1 and ?2) represent the sub-expressions that
will be generated as sub-goals.

To generate each sub-goal, the generation judgment should be used
recursively for each placeholder. It means that other typing rules can
be selected.

Suppose that, for short, each sub-goal selected the rule for constants
(cst). Then, the third generation step would be:

2 : 𝑖𝑛𝑡
(cst)

5 : 𝑖𝑛𝑡
(cst)

Γ ⊢ 2 : 𝑖𝑛𝑡 Γ ⊢ 5 : 𝑖𝑛𝑡

Γ ⊢ 2 + 5 : 𝑖𝑛𝑡
(+)

(3)

As can be noted, since only terminal rules (without premises) were
selected, the generation process finished producing a new expression
(2 + 5) of type 𝑖𝑛𝑡 .

Next, we explain in detail how each expression is generated

according to the presented expression generation judgment.

Literal generation. A literal expression is simply the value of

either an integer or an atom, following the rule (cst). Note that
this expression is final. The value of this expression will be either

a random integer generated by the QuickCheck library using the

arbitrary function or a random atom selected amongst a list of

previously declared atoms.

Variable generation. To generate a variable expression, according
to the (var) rule, the generator has to look through the given

context and randomly select an element 𝑥 that matches with the

required type 𝑡 . It is worth mentioning that this expression can

only be generated if the context of variables is not empty and we

have at least one variable whose type is the same as the required

type. This expression is final and thus it doesn’t need to generate

sub-expressions.

There is an important observation about our algorithm that

should be mentioned here. The process of generating random ex-

pressions is not completely random, i.e., it doesn’t select any syn-

tactical constructor that could generate an expression of a given

type at random, because it might take an expression that could not

be completed to be type-correct. This would require the recursive

process to backtrack, looking for another expression that could be

fulfilled. Instead, the generation judgment produces a list of valid

candidate expressions to be selected, considering only a subset

of the typing rules. With this approach, we are able to guarantee

the generation of well-typed expressions will be finished, and also

avoid the need for backtracking.

Random Elixir Code Generation Applied to Compiler Testing SBLP ’24, September 30 – October 04, 2024, Curitiba, PR

Arithmetic addition expression. According to the type system,

through the rule (+), the expression that produces a sum of two

other sub-expressions 𝑒1 + 𝑒2, will only be well-typed if both sub-

expressions are evaluated to the int type4. Therefore, when the

generator creates such an expression, it must generate two sub-

expressions of type int recursively. Next, we can see an example of

generated code.

Example 2. An expression that uses the arithmetic addition pro-
duced by our generator.

9 + fn x0, x1 -> x1 end.(:var196, 6)

Note that this example has an expression with the sum operator,

where the function application that appears on the right-hand side

can be seen as a sub-expression. Any expression can be generated

to fulfill the rule’s premises, as long as its evaluation is of the int
type. Although such kind of code might look unusual for a regular

developer, it is useful to reach all the branches on the compiler.

Lambda expression generation. Following the typing rule (𝜆),
to generate a well-typed lambda expression 𝜆(𝑥 .𝑒) of type 𝑠 → 𝑡 ,

first we need to generate a sequence of parameter names 𝑥 , and

then generate the function body 𝑒 using the expression generation

judgment recursively, considering a context augmented with the

generated variables 𝑥 with type 𝑠 . Next we can see an example of

generated code.

Example 3. A lambda expression that uses the arithmetic addition
produced by our generator.

fn x0, x1 -> x1 + x0 + 374 end

This example shows that a function with type 𝑖𝑛𝑡, 𝑖𝑛𝑡 → 𝑖𝑛𝑡 was

generated, containing two addition operations in its body expres-

sion. Although being a simple example, it exhibit a characteristic

of our generator. When creating a body expression, the genera-

tion judgment can be invoked recursively several times, one for

each sub-expression. Since the algorithm is recursive, it can gen-

erate a variety of functions containing any sorts of the syntactical

construtors.

Function application generation. To generate a well-typed func-

tion application, the algorithm follows the rule (app). The input for
the expression generation judgment is a type 𝑡 , which should guide

the type of the generated expression. An application is defined by

having two sub-expressions. The first sub-expression 𝑓 should eval-

uate to a function, and the second is sequence of sub-expressions

𝑒 , representing the actual parameters to be applied to that func-

tion. The generation process starts by generating a sequence of

types 𝑠 to define the parameter types. Then, an expression of type

𝑠 → 𝑡 is generated recursively. After that, the expression genera-

tion judgment is applied recursively to generate each expression in

𝑒 , considering the types defined in 𝑠 . That way, we guarantee that

all parameters expressions are defined with correct types. The next

example shows another result of the generator.

Example 4. A function application generated by our algorithm.

4
This is a restriction imposed by the considered formalization of the Elixir type sys-

tem [2]. The complete language allows using the sum operator polymorphically with

numeric types.

fn x1, x2 -> x1 end.(
case :var202 do

:var1 when is_tuple(:var17) -> 2 + 3
x1 when 9 <= 9 -> 8
_ -> 2

end,
:var53

)

In this example, the generator created a lambda expression with

two formal parameters (𝑥1 and 𝑥2) and, consequently, two expres-

sions to supply the function with the actual parameters. The value

used to supply the first parameter will be the result of evaluating

the case expression, which was recursively generated, and the value
to supply the second argument is a random generated atom.

Tuple generation. To generate a tuple expression, the expression

generation judgment follows the rule (tuple), where a sequence of
expressions 𝑒 should be generated according to a sequence of types

𝑡 . The following example shows an example of a tuple generated

by our algorithm.

Example 5. A tuple expression with different types produced by
our generator.

{-15, :var54, fn x -> -18 + x end}

The example above shows a tuple generated from the type

𝑖𝑛𝑡, 𝑎𝑡𝑜𝑚, 𝑖𝑛𝑡 → 𝑖𝑛𝑡 , where an int -15, an atom :var54, and a func-
tion fn x -> -18 + x end were generated, respectively to the

required tuple type. One can note that only final expressions ap-

pear on this example. This happened because the fuel variable that

limits recursion was set to zero to simplify the comprehension of

the example. However, any expression could be generated inside

a tuple, final or not, as long as its evaluation was of the specified

type for each index.

Projection generation. The tuple projection expression is gener-

ated according to the rule (proj), and receives as input a type 𝑡𝑖
of which the projected element should belong to. The projection

(function elem) is composed of two expressions (𝑓 and 𝑒). The first

expression 𝑓 is a literal of the int type and represents the index of

the desired tuple element. The second expression 𝑒 should be an

expression that evaluates to a tuple type. Expression 𝑓 is generated

as an integer between one and a maximum threshold, which de-

fines the maximum size of the generated tuple. Then, expression 𝑒

is generated with size at least the value of 𝑓 . Besides this step, we

have to guarantee that the projection of index 𝑓 on 𝑒 has type 𝑡𝑖 .

Example 6. A projection expression produced by our generator
using as input the type int.

elem({:var105, -14, -28, 30, -29}, 2)

The example above shows a tuple projection expression with a

tuple of random elements containing only final expressions, and an

index to be projected. It is worth mentioning that we ensure that

the tuple element at the given index will be of the correct type by

forcing the type of the element at the given index to be the same as

the expression generation judgment input type before generating

the tuple expression.

SBLP ’24, September 30 – October 04, 2024, Curitiba, PR Facchi et al.

Let binding generation. To generate a let expression, the algo-
rithm follows the rule (let). The generation judgment receives

as input a context of free variables, and a type 𝑡 . A let binding is

created by generating a random name 𝑥 with a type 𝑠 , an expres-

sion 𝑓 of type 𝑠 , and an expression 𝑒 which should have type 𝑡 ,

considering an extended Γ environment with the variable 𝑥 of type

𝑠 .

Example 7. A let binding generated by our algorithm.

x0 = fn x0 -> x0 + x0 end.(
case :var208 do
:var233 when 18 < -16 -> 29
x0 -> 0
_ -> -11

end
)

Note that the concrete syntax used to represent the let expression

shown in the example above is different from the one shown in

Figure 1 since the syntax on which we based our generator is not

fully implemented in Elixir yet [2]. Nevertheless, the (let) rule

constraints shown in Figure 2 are still respected, and the generated

let expressions can be compiled and executed by Elixir as usual

with the same semantics.

Case generation. Elixir provides pattern matching, which allows

a developer to assert on the shape or extract values from data

structures, and to augment it with guards to perform more complex

checks. In the subset we are working on, we can apply pattern

matching using a case expression.
As we can see on the Elixir syntax and typing rules, the case

expression involves, besides expressions and types, the use of pat-

terns 𝑝 , and guards 𝑔. To represent the abstract syntax of both, we

used Haskell ADTs, as we can see below.

data Pattern = VarPattern String
| WildcardPattern
| LiteralPattern Literal
| TuplePattern [Pattern]

data Guard = GuardAnd Guard Guard
| GuardOr Guard Guard
| GuardNot Guard
| GuardIsInt Sel
| GuardIsAtom Sel
| GuardIsTuple Sel
| GuardEqual Sel Sel
| GuardNotEqual Sel Sel
| GuardLess Sel Sel
| GuardLessEqual Sel Sel

This subset allows to pattern match variables, wildcards, literals

and tuples. We can augment the pattern with conditional guards

which allow us to use several boolean and relational operators,

besides some extra functions. We defined specific generators for

patterns and guards from a given type, similarly to what was done

for types
5
.

5
We omit the details of these generators for space reasons.

Having generators for patterns and guards, we can proceed for

the case expression generation. This expression is somewhat intri-

cate to define. The algorithm follows the rule (case), and receives

a type 𝑡 as input. On the first step, it is necessary to generate an

expression that is allowed to be pattern matched
6
. So, we generate

a type 𝑠 that can be used with pattern matching at random, and

then an expression 𝑒1 is created using the expression generation

judgment with that type 𝑠 as input. After that, the algorithm gener-

ates a sequence of case alternatives 𝑝𝑔 → 𝑒2. To avoid generating

overlapping and non-exhaustive patterns, we opted for a fixed size

of three alternatives for each case expression. The first would con-

sider patterns 𝑝 that could be refuted, including the literal and the

tuple pattern. The second pattern matches with a variable. And the

last is used with a wildcard, acting as a default fail-safe alternative,

to ensure that the case expression will always match something and

return. It is important to mention that, conventionally, a variable

pattern would always be evaluated as true. However, due to the

guards 𝑔, that might not be always the case. The use of guards

is optional, so we use a weight to define the frequency the guard

should be generated. Besides all that, for each alternative the algo-

rithm has yet to generate an expression which respects the input

type 𝑡 . Respecting all these constraints, we were able to generate

well-typed case expressions.

Example 8. A case expression with guards produced by our gener-
ator.
case -9 do

11 -> -19;
x0 when is_tuple(elem({:var13, -25}, 1)) -> x0 + -8;
_ -> 38

end

On the example, we can note that the second alternative is not

evaluated as true due to the generated guard, because the result of

the (elem) expression is not a tuple, requiring the generation of a

third alternative that should always be evaluated as true.
The method described in this section has demonstrated a tech-

nique for creating correctly typed expressions in accordance with

the typing rules specified by Castagna, Duboc, and Valim [2]. The

last is the main designer of the Elixir language. The next section

shows some experiments conducted using a prototype version of

our algorithm, aiming to verify its effectiveness in producing valid

code that is accepted by the compiler. Given that the code pro-

duced conforms to a valid Elixir program, we are confident that the

approach and its implementation are suitable for testing scenarios.

4 PROPERTY-BASED TESTS
Property-based testing is a software testing methodology that sys-

tematically explores the behavior of software programs by validat-

ing if a property holds for a wide range of automatically generated

inputs. Unlike traditional example-based testing, where specific

input-output pairs are manually defined, property-based testing

defines high-level properties the code should satisfy universally.

A key strength of property-based testing lies in its ability to ex-

pose edge cases and hidden bugs that might remain undetected with

traditional testing techniques. By generating a vast array of random

6
In Elixir, we cannot apply pattern matching in expressions of a function type.

Random Elixir Code Generation Applied to Compiler Testing SBLP ’24, September 30 – October 04, 2024, Curitiba, PR

inputs, property-based testing ensures the software is tested far

beyond the limited cases a developer might think to test manually.

The goal is to rigorously verify the correctness of the software

by exhaustively testing it across diverse and unanticipated input

scenarios.

To carry out property-based tests, we used the QuickCheck li-

brary, which was developed in Haskell by Claessen and Hughes,

with the premise that, instead of tests being generated manually

for a specific target code, an arduous and tedious task, generated

tests can be tested quickly [7] using such a test generator.

To provide a proof-of-concept of our work, we implemented

an Elixir random code generator tool using Haskell based upon

the definitions presented in Section 3 and a simple test suite also

using Haskell and QuickCheck. To ensure the validity of our gen-

erated Elixir code, we implemented a property designed to verify

that all generated test cases compile successfully. This property

establishes that the code generated by our tool is both syntactically

valid and correctly typed. For each generated program, the process

involves writing the code to disk and subsequently invoking the

Elixir compiler to compile the program and report back whether

the compilation was successful or if any error was found.

The property being tested begins by generating a random Elixir

program according to the presented syntax and typing rules, as

described. This program is then written to a temporary .ex file

by the Haskell writeFile function, ensuring that each test case

is isolated and manageable. The next step involves invoking the

Elixir compiler to execute the elixirc command on the generated

file. This command attempts to compile the program and reports

whether the compilation was successful along with the program

output. We capture the exit status of the compilation process. In

the event of a failure, the compiler’s error messages are analyzed,

providing insights into the specific issues encountered, and allowing

us to iteratively refine the generator to ensure that a valid program

is generated.

This property-based approach left us confident that each gen-

erated test case is valid, and in addition it also provided us with

a mechanism for continuously validating the overall effectiveness

and reliability of our code generator. The tested property ensures

that our tool consistently produces valid, compilable code, which

is a fundamental prerequisite for any further semantic testing or

execution of the generated programs.

We used the test suite to run ten batches of 1000 tests. Each

batch generated, compiled and executed all programs in roughly 6

minutes on a computer with an Intel(R) Core i7-10700k CPU (5,00

GHz x 8) running Ubuntu 20.04.6 LTS onWindows 11 throughWSL.

It is worth noting that all generated programs compiled successfully,

confirming that we are indeed generating onlywell-typed programs,

meaning that our code generation and testing framework were

reliable in validating the generated Elixir code. It indicates that the

generated programs can be used in other test scenarios.

We also generated programs and compared them across different

versions of Elixir by looking at their outputs. We conducted ten sets

of 1000 tests, each taking around 18 minutes. The versions we used

were 1.15.0, 1.16.3, and 1.17.1, all of which utilized Erlang OTP/25.

We employed asdf to manage multiple Elixir versions. During test

execution, no differences in output were found between the versions

we tested. Some tests, however, could not be completed due to the

compilation process taking more than 10 seconds, which forced us

to reduce the generated code size.

Additionally, we employed the Haskell Program Coverage (HPC)

tool to assess the diversity of the generated programs and pro-

vide detailed insights into the execution paths taken by our code

generation logic. Given that our approach to code generation is

randomized, we have no control over what branches the algorithm

will take during execution, it is crucial to ensure that this random-

ness adequately explores all syntactical constructs and does not

inadvertently miss any critical paths or edge cases.

Upon analyzing the statistics report provided by HPC, we ob-

served that 100 percent of the syntactical constructors were covered

in a batch of 1,000 test cases. This result is significant as it demon-

strates that our random code generationmethod effectively explores

all possible code patterns within defined constraints. Achieving

full coverage means that our tool can generate a wide variety of

valid Elixir programs, ensuring that no syntactical edge cases are

overlooked, which implies that our program generation approach

can be trusted to test the full spectrum of valid Elixir syntax.

By ensuring that all syntactical constructs are represented in

the generated programs, we can state that our tool provides good

inputs for testing purposes, which is important for further tests,

increasing the probability of identifying and addressing potential

bugs.

5 RELATEDWORKS
Although the concept of random code generation originated in the

early 1960s [13], it continues to be a challenge to this day, even with

many advancements in the field, since it is hard to create a generator

that respects the constraints imposed by compilers. The studies

presented in this section explore various techniques for random

code generation aimed at testing compilers. These studies have

provided insights into how to develop a random code generation

tool and how to effectively generate a diverse range of test cases

that can thoroughly test the several capabilities of a compiler.

Palka; Claessen; Russo; Hughes [11] tested the Haskell compiler

(GHC) by generating lambda terms to locate errors in the target

compiler. Ensuring that those errors were not found by end users,

thus contributing to the stability and reliability of GHC. The author

used the QuickCheck library due to its usefulness in program-

based testing properties and, additionally, used a technique called

shrinking to reduce the size of the generated code, simplifying it

and facilitating its correction process by compiler developers. The

authors contribution was notable because it popularized the use of

random testing, a technique not that widespread at the time. Despite

generating only a limited subset of Haskell, its efforts revealed

flaws in the compiler. Similarly to their work, we pretend to explore

random code generation with property-based testing to contribute

to the stability and reliability of the targeted language.

Livingskii; Babokin; Regehr [9] developed the Yet Another Ran-

dom Program Generator (YARPGen) for C and C++, which tested

the GCC, LLVM, and Intel® C++ Compiler. YARPGen supports code

generation policies, which alter the generated code seeking to avoid,

or at least delay, the saturation point of the generator, which, to put

it simply, is the point where it cannot find more bugs. The test case

generated by YARPGen goes through a configurable collection of

SBLP ’24, September 30 – October 04, 2024, Curitiba, PR Facchi et al.

compilers and compilation options. If a compiler fails or a difference

gets found from all the outputs, the code goes through the shrink-

ing process and goes to a bug classifier developed by the authors.

Through YARPGen, the authors found 221 bugs divided between

the GCC, LLVM, and Intel® C++ Compiler. Some of these bugs were

independently rediscovered by developers of large projects, proving

that their tool can find bugs made by programmers. Contrary to

the authors, this work does not use code generation policies and

code reduction.

Feitosa; Ribeiro; Bois [4] provided a Java program test generator

specification using the Featherweight Java (FJ) formalism to gen-

erate well-typed programs. The authors developed an interpreter

for FJ in Haskell, provided a type-directed heuristic approach to

generating random programs, and made use of the QuickCheck

library to perform property-based testing as a brief way to check

the typing of the generated programs and ensure that all programs

compile. The author’s technique regarding a code generator devel-

oped based on the targeted language type system along with the

QuickCheck library usage is similar to this paper.

Yang; Chen; Eide; Regehr [14] developed CSmith, a random code

generation tool for the C language targeting the GCC and LLVM

compilers. Even though their approach was already employed pre-

viously by other authors, they were capable to generate a large

subset of the language while ensuring each program had a single

interpretation. Over three years, their efforts revealed more than

325 bugs reported to developers. According to them, most of the

found bugs caused the compiler to produce incorrect code without

warning, highlighting the importance of the random code genera-

tion method for testing compilers. Their results have proven that

random code generation is a much more promising technique for

compiler testing than test suites, the main technique at the time,

stating that their code generation tool can find bugs in difficult to

reach compiler areas by generating atypical scenarios.

In addition, the domain of AI-driven and machine learning-based

generation of test cases has recently become a focal point of interest.

Take, for instance, the study by Liu et al. [8], which employs a ma-

chine learning method aimed at C compilers, successfully compiling

and optimizing 82% of the produced code to detect bugs that cause

compiler crashes. In a similar vein, Cummins et al. [3] utilize the

same strategy, with a focus on OpenCL compilers. Lyu et al. [10] in-

troduced a coverage-oriented fuzzer specifically for prompt fuzzing,

which cyclically creates fuzz drivers to probe untested library code.

These studies employ varied code generation techniques, which

could be further investigated within the Elixir compiler testing

framework.

6 CONCLUSION
In this paper, a random code generator was presented based on a

formalization of Elixir’s syntax and type system to generate type-

correct Elixir programs. We reasoned that the generation method is

sound concerning a subset of Elixir’s type system, which includes

primitive types and operators, several expressions, and pattern

matching with guards. Furthermore, we used the QuickCheck li-

brary to perform property-based testing, and the HPC tool to pro-

duce an analysis of the Elixir code coverage through the generation

and execution of the generated programs.

It is worth mentioning that several modifications were made

throughout the development phase as bugs were discovered in the

generator. For instance, when the output code wouldn’t compile, the

counterexamples from QuickCheck were instrumental in rapidly

detecting and resolving these issues. Additionally, the lightweight

approach of property-based testing allowed us to enhance our un-

derstanding of the type system’s rules and the correct way to apply

them in our Elixir random code generator.

In future work, we can expand the algorithm to cover more

syntactical constructors and expressions and implement elixir pro-

cesses with message exchange between them. Also, differential

testing can be applied more thoroughly to compare code code out-

put between multiple Elixir versions to assert whether the code

generator has the potential to find and understand bugs. Addition-

ally, the same process can be applied with the appearance of other

Elixir compilers.

REFERENCES
[1] Elton Maximo Cardoso, Daniel Freitas Pereira, Regina Sarah Monferrari Amorim

De Paula, Leonardo Vieira Dos Santos Reis, and Rodrigo Geraldo Ribeiro. 2022. A

Type-Directed Algorithm to Generate Random Well-Formed Parsing Expression

Grammars. In Proceedings of the XXVI Brazilian Symposium on Programming Lan-
guages (, Virtual Event, Brazil,) (SBLP ’22). Association for Computing Machinery,

New York, NY, USA, 8–14. https://doi.org/10.1145/3561320.3561326

[2] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2023. The Design Princi-

ples of the Elixir Type System. arXiv:2306.06391 [cs.PL]

[3] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.

Compiler Fuzzing through Deep Learning. In Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Amsterdam,

Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,

USA, 95–105. https://doi.org/10.1145/3213846.3213848

[4] Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du Bois.

2019. Generating Random Well-Typed Featherweight Java Programs Using

QuickCheck. Electron. Notes Theor. Comput. Sci. 342, C (apr 2019), 3–20. https:

//doi.org/10.1016/j.entcs.2019.04.002

[5] Elixir. 2023. Elixir. https://elixir-lang.org/

[6] Samuel Feitosa, Rodrigo Ribeiro, and Andre Du Bois. 2020. A type-directed

algorithm to generate random well-typed Java 8 programs. Science of Computer
Programming 196 (2020), 102494. https://doi.org/10.1016/j.scico.2020.102494

[7] John Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff and
Staying Sane. Vol. 9600. 169–186. https://doi.org/10.1007/978-3-319-30936-1_9

[8] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. DeepFuzz:

Automatic Generation of Syntax Valid C Programs for Fuzz Testing. Proceedings
of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 1044–1051.

https://doi.org/10.1609/aaai.v33i01.33011044

[9] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for

C and C++ Compilers with YARPGen. Proc. ACM Program. Lang. 4, OOPSLA,
Article 196 (nov 2020), 25 pages. https://doi.org/10.1145/3428264

[10] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. 2024. Prompt Fuzzing for

Fuzz Driver Generation. arXiv:2312.17677

[11] Michał H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing

an Optimising Compiler by Generating Random Lambda Terms. In Proceedings of
the 6th International Workshop on Automation of Software Test (Waikiki, Honolulu,

HI, USA) (AST ’11). Association for Computing Machinery, New York, NY, USA,

91–97. https://doi.org/10.1145/1982595.1982615

[12] PetSI. 2018. ELIXIR: uma linguagem de programação brasileira em sistemas

distribuídos do mundo. http://www.each.usp.br/petsi/jornal/?p=2459

[13] Richard L. Sauder. 1962. A general test data generator for COBOL. In Proceedings
of the May 1-3, 1962, Spring Joint Computer Conference (San Francisco, California)

(AIEE-IRE ’62 (Spring)). Association for Computing Machinery, New York, NY,

USA, 317–323. https://doi.org/10.1145/1460833.1460869

[14] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-

derstanding Bugs in C Compilers. SIGPLAN Not. 46, 6 (jun 2011), 283–294.

https://doi.org/10.1145/1993316.1993532

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

