Use este identificador para citar ou linkar para este item: https://rd.uffs.edu.br/handle/prefix/3374
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Caimi, Luciano Lores-
dc.creatorKonflanz, Daniel Mello-
dc.date2019-
dc.date.accessioned2020-02-04T12:16:57Z-
dc.date.available2019-
dc.date.available2020-02-04T12:16:57Z-
dc.date.issued2019-
dc.identifier.urihttps://rd.uffs.edu.br/handle/prefix/3374-
dc.description.abstractAs a consequence of the high application of instruction-level parallelism techniques in modern processors, the branch prediction are a of study remains relevant after 40 years of research. This work applies neural networks based on the Hierarchical Temporal Memory (HTM) theory to the branch prediction task and explores their adequacy to the problem’s characteristics. More specifically, the problem is faced asa sequence prediction task and tackled by the HTM sequence memory. Four traditional branch prediction schemes adapted to operate with an HTM system and two variations of the previous designs were evaluated on a slice of the traces provided by the 4th Championship Branch Prediction contest. The leading result was achieved by the HTM predictor based on the g share branch predictor, that for 8 million instructions was able to improve them is prediction rate by 14.3% incomparison to it straditiona l2-bitcounters version when both used a 13-bithi storyl ength. However, high level so faliasing were found to prevent the HTM system to scale and compete again stlarger conventional branch predictors.pt_BR
dc.description.provenanceSubmitted by Suelen Spindola Bilhar (suelen.bilhar@uffs.edu.br) on 2019-12-20T13:59:45Z No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5)en
dc.description.provenanceApproved for entry into archive by Franciele Scaglioni da Cruz (franciele.cruz@uffs.edu.br) on 2020-02-04T12:16:57Z (GMT) No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-04T12:16:57Z (GMT). No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5) Previous issue date: 2019en
dc.languageengpt_BR
dc.publisherUniversidade Federal da Fronteira Sulpt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Chapecópt_BR
dc.publisher.initialsUFFSpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectMemória rampt_BR
dc.subjectRedes neuraispt_BR
dc.subjectCiência da computaçãopt_BR
dc.titleInvestigating hierarchical temporal memory networks applied to dynamic branch predictionpt_BR
dc.typeMonografiapt_BR
Aparece nas coleções:Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
KONFLANZ.pdf2,57 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.